Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Plot Layout
2.3. Experimental Treatments
2.3.1. Irrigation Application
2.3.2. Nutrient Application
2.3.3. Plant Management
2.4. Measurements and Calculations
2.4.1. Net Photosynthetic Rate (Pn)
2.4.2. Dry Biomass, Yield, and Quality
2.4.3. ETa, WUE, and NUE
2.5. Statistical Analysis
3. Results
3.1. Net Photosynthetic Rate
3.2. Dry Biomass Cumulative
3.3. Yield, WUE, NUE
3.4. Tomato Quality
4. Discussion
4.1. Pn
4.2. Dry Biomass
4.3. Yield, WUE, and NUE
4.4. Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teklay, T.; Abadi, B.; Mebrahtu, G. Optimizing Irrigation Water and Nitrogen Fertilizer Levels for Tomato Production. Open Agric. J. 2019, 13, 198–206. [Google Scholar]
- Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes. A mini review. Int. J. Agron. 2015, 2015, 478041. [Google Scholar] [CrossRef] [Green Version]
- De-Pascale, S.; Maggio, A.; Fogliano, V.; Ambrosino, P.; Ritieni, A. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hortic. Sci. Biotechnol. 2001, 76, 447–453. [Google Scholar] [CrossRef]
- Evgenidis, G.; Traka-Mavrona, E.; Koutsika-Sotiriou, M. Principal component and cluster analysis as a tool in the assessment of tomato hybrids and cultivars. Int. J. Agron. 2011, 2011, 697879. [Google Scholar] [CrossRef] [Green Version]
- Farre, G.; Sanahuja, G.; Naqvi, S.; Bai, C.; Capell, T.; Zhu, C.; Christou, P. Travel advice on the road’ to carotenoids in plants. Plant Sci. 2010, 179, 28–48. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.C.; Li, F.M. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Rodriguez, J.C.; Shaw, N.L.; Cantliffe, D.J. Influence of plant density on yield and fruit quality of greenhouse-grown Galia muskmelons. HortTechnology 2007, 17, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.H.; Li, J.L.; Li, X.L.; Zhang, F.S. Effects of compound fertilizers utilized on soil environmental quality in protected vegetable field. Agro-Environ. Protect. 2002, 21, 5–8, (In Chinese with English abstract). [Google Scholar]
- Yuan, B.Z.; Kang, Y.; Nishiyama, S. Drip irrigation scheduling for tomatoes in unheated greenhouses. Irrig. Sci. 2001, 20, 149–154. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Lin, W.D. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Fan, J.; Chen, B.; Wu, L.; Zhang, F.; Lu, X.; Xiang, Y. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy Convers. Manag. 2018, 144, 903–914. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhang, F.; Bai, H.; Lu, X.; Xiang, Y. New combined models for estimating daily global solar radiation based on sunshine duration in humid regions: A case study in South China. Energy Convers. Manag. 2018, 156, 618–625. [Google Scholar] [CrossRef]
- Kiymaz, S.; Ertek, A. Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Kirsehir, Turkey. Agric. Water Manag. 2015, 158, 156–165. [Google Scholar] [CrossRef]
- Yue, W.; Chen, X.; Wang, W.; Zhang, F. Effects of different nitrogen treatments on yield and quality of greenhouse muskmelon under mulched drip irrigation condition. J. Plant Nutr. Fertil. 2019, 25, 461–469, (In Chinese with English abstract). [Google Scholar]
- Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; Demir, A.O. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol. 2014, 55, 103–114. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shennan, C.; Grattan, S.R.; May, D.M. Tomato fruit yields and quality under water stress and salinity. J. Am. Soc. Hortic. Sci. 1991, 116, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.; Ozguven, A. Yield response of greenhouse-grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.T.; Kou, C.L.; Christie, P.; Dou, Z.X.; Zhang, F.S. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Gutezeit, B. Yield and nitrogen balance of broccoli at different soil moisture levels. Irrig. Sci. 2004, 23, 21–27. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhassan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Rajput, T.B.S.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2006, 7, 293–311. [Google Scholar] [CrossRef]
- Bhat, R.; Sujatha, S.; Balasimha, D. Impact of drip fertigation on productivity of areca nut (Areca catechu L.). Agric. Water Manag. 2007, 90, 101–111. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Cheng, M.; Zhang, F.; Wang, X.; Fan, J.; Wu, L.; Fang, D.; Zou, H.; Xiang, Y. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Sci. Hortic. 2019, 243, 357–366. [Google Scholar] [CrossRef]
- Aujla, M.S.; Thind, H.S.; Buttar, G.S. Fruit yield and water use efficiency of eggplant (Solanum melongena L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Sci. Hortic. 2007, 112, 142–148. [Google Scholar] [CrossRef]
- Kirnak, H.; Higgs, D.; Kaya, C.; Tas, I. Effects of irrigation and nitrogen rates on growth, yield, and quality of muskmelon in semiarid regions. J. Plant Nutr. 2005, 28, 621–638. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements. Irrigation and Drainage Paper No. 24; Food and Agriculture Organization: Roma, Italy, 1977. [Google Scholar]
- Chen, X.; Cai, H.; Li, H.; Wang, J.; Du, W. Calculation of crop evapotranspiration in greenhouse. Chin. J. Appl. Ecol. 2007, 18, 317–321. (In Chinese) [Google Scholar]
- Li, H.; Sun, Q.; Zhao, S.; Zhang, W. Principles and Techniques of Plant Physiological Biochemical Experiment; Higher Education Press: Beijing, China, 2000; pp. 182–248. (In Chinese) [Google Scholar]
- Garcia-Bobledo, E.; Corzo, A.; Papaspyrou, S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 2014, 162, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Andreu, L.; Hopmans, J.; Schwankl, L. Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree. Agric. Water Manag. 1997, 35, 123–146. [Google Scholar] [CrossRef]
- Ertek, A.; Sensoy, S.; Gedik, I.; Küçükyumuk, C. Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agric. Water Manag. 2006, 81, 159–164. [Google Scholar] [CrossRef]
- Mofokeng, M.; Steyn, J.; Du-Plooy, C.; Prinsloo, G.; Araya, H. Growth of pelargonium sidoides DC. in response to water and nitrogen level. S. Afr. J. Bot. 2015, 100, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Huang, S.; Tao, H.; Wang, Y.; Qi, L.; Wang, P. Effects of Different Nitrogen Regimes on Canopy Structure and Partial Physiological and Agronomic Traits in Summer Maize. Acta Agron. Sin. 2012, 38, 301–306, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Du, Y.; Cao, H.; Liu, S.; Gu, X.; Cao, Y. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, F.; Fang, D.; Li, Z.; Gao, M.; Wang, H.; Wu, D. Effects of water and nitrogen supply on the growth and water use efficiency of cucumber (Cucumis sativus L.) under fertigation. Sci. Agric. Sin. 2014, 47, 4475–4487, (In Chinese with English abstract). [Google Scholar]
- Xing, Y.; Zhang, F.; Wu, L.; Fan, J.; Zhang, Y.; Li, J. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency. Trans. Chin. Soc. Agric. Eng. 2015, 31 (Suppl. S1), 110–121, (In Chinese with English abstract). [Google Scholar]
- Yue, W.; Zhang, F.; Li, Z.; Zou, H.; Gao, Y. Effects of water and nitrogen coupling on nitrogen uptake of muskmelon and nitrate accumulation in soil. Trans. Chin. Soc. Agric. Mach. 2015, 46, 88–96, (In Chinese with English abstract). [Google Scholar]
- Wu, L.; Zhang, F.; Zhou, H.; Suo, Y.; Xue, F.; Zhou, J.; Liang, F. Effect of drip irrigation and fertilizer application on water use efficiency and cotton yield in North of Xinjiang. Trans. Chin. Soc. Agric. Eng. 2014, 30, 137–146, (In Chinese with English abstract). [Google Scholar]
- Song, N.; Wang, F.; Yang, C.; Yang, K. Coupling effects of water and nitrogen on yield, quality and water use of potato with drip irrigation under plastic film mulch. Trans. Chin. Soc. Agric. Eng. 2013, 29, 98–105, (In Chinese with English abstract). [Google Scholar]
- Chai, Z.; Wang, X.; Sun, X.; Jiang, A.; Bai, R. Influence on growth and yield of zizyphus jujube under coupling of water and nitrogen. Res. Soil Water Conserv. 2012, 19, 201–204+209. (In Chinese) [Google Scholar]
- Ertek, A.; Sensoy, S.; Küçükyumuk, C.; Gedik, I. Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.). Agric. Water Manag. 2004, 67, 63–76. [Google Scholar] [CrossRef]
- Erdem, T.; Arin, L.; Erdem, Y.; Polat, S.; Deveci, M.; Okursoy, H.; Gültaş, H.T. Yield and quality response of drip irrigated broccoli (Brassica oleracea L. var. italica) under different irrigation regimes, nitrogen applications and cultivation periods. Agric. Water Manag. 2010, 97, 681–688. [Google Scholar] [CrossRef]
- Gupta, A.; Chattoo, M.; Singh, L. Drip irrigation and fertigation technology for improved yield, quality, water and fertilizer use efficiency in hybrid tomato. J. AgriSearch 2015, 2, 94–99. [Google Scholar]
Soil Depth (cm) | Soil Density (g cm−3) | Field Capacity (Vw) | PH (dsm−1) | Total Nitrogen g kg−1 | Available p mg kg−1 | Available k mg kg−1 | Organic g kg−1 | Soil Texture |
---|---|---|---|---|---|---|---|---|
0–20 | 1.48 | 24.31 | 6.5 | 1.1 | 74.3 | 131.2 | 17.8 | Sandy-loam |
Treatment | Nitrogen Rate (kg hm−2) | Irrigation Amount (mm) | Irrigation Amount during Each Growth Period (mm) | ||||
---|---|---|---|---|---|---|---|
Seedling Stage | Flowering and Fruiting Stage | Full Bearing Stage | Late Development Stage | Total | |||
W1N1 | 120 | 0.75 ETc | 32 | 50 | 104.4 | 43.9 | 230.2 |
W1N2 | 220 | 0.75 ETc | 32 | 50 | 104.4 | 43.9 | 230.2 |
W1N3 | 320 | 0.75 ETc | 32 | 50 | 104.4 | 43.9 | 230.2 |
W1N4 | 420 | 0.75 ETc | 32 | 50 | 104.4 | 43.9 | 230.2 |
W2N1 | 120 | 1.0 ETc | 42.6 | 66.7 | 139.2 | 58.5 | 307 |
W2N2 | 220 | 1.0 ETc | 42.6 | 66.7 | 139.2 | 58.5 | 307 |
W2N3 | 320 | 1.0 ETc | 42.6 | 66.7 | 139.2 | 58.5 | 307 |
W2N4 | 420 | 1.0 ETc | 42.6 | 66.7 | 139.2 | 58.5 | 307 |
W3N1 | 120 | 1.25 ETc | 53.3 | 83.4 | 173.9 | 73.1 | 383.7 |
W3N2 | 220 | 1.25 ETc | 53.3 | 83.4 | 173.9 | 73.1 | 383.7 |
W3N3 | 320 | 1.25 ETc | 53.3 | 83.4 | 173.9 | 73.1 | 383.7 |
W3N4 | 420 | 1.25 ETc | 53.3 | 83.4 | 173.9 | 73.1 | 383.7 |
Irrigation Amount | Nitrogen Application Rate | Dry Biomass Cumulative (g/Plant) | ||||
---|---|---|---|---|---|---|
Root | Stem | Leaf | Fruit | Total | ||
W1 (0.75 ETc) | N1 | 9.19 f | 82.06 g | 88.89 f | 89.39 i | 269.53 i |
N2 | 9.55 f | 92.48 f | 99.29 e | 96.97 hi | 298.29 h | |
N3 | 9.69 f | 100.34 e | 114.51 d | 109.04 fg | 333.59 f | |
N4 | 9.34 f | 97.81 e | 104.70 e | 106.77 g | 318.62 g | |
W2 (1.0 ETc) | N1 | 12.37 d | 96.74 of | 115.00 d | 137.98 c | 362.09 e |
N2 | 13.72 bc | 118.51 c | 119.74 d | 147.93 b | 399.90 c | |
N3 | 15.39 a | 130.95 b | 129.18 bc | 157.04 a | 432.57 a | |
N4 | 14.39 b | 122.68 c | 121.07 cd | 153.04 ab | 411.18 bc | |
W3 (1.25 ETc) | N1 | 11.34 e | 111.37 d | 128.74 bc | 98.72 h | 350.17 e |
N2 | 12.54 d | 122.95 c | 134.51 ab | 114.96 of | 384.98 d | |
N3 | 13.58 c | 139.28 a | 140.07 a | 124.23 d | 417.17 b | |
N4 | 12.26 d | 130.38 b | 139.30 a | 118.21 de | 400.15 c |
Irrigation Amount | Nitrogen Application Rate | Yield (t ha−1) | WUE (kg m−3) | NUE (kg kg−1 N) |
---|---|---|---|---|
W1 (0.75 ETc) | N1 | 53.21 i | 23.1 f | 443.4 c |
N2 | 57.72 hi | 25.1 e | 262.4 f | |
N3 | 64.91 fg | 28.2 bcd | 202.8 h | |
N4 | 63.55 g | 27.6 cd | 151.3 i | |
W2 (1.0 ETc) | N1 | 82.13 c | 26.8 d | 684.4 a |
N2 | 88.05 b | 28.7 bc | 400.2 d | |
N3 | 93.47 a | 30.5 a | 292.1 e | |
N4 | 91.09 ab | 29.7 ab | 216.9 gh | |
W3 (1.25 ETc) | N1 | 58.76 h | 15.3 h | 489.7 b |
N2 | 68.43 of | 17.8 g | 311.0 e | |
N3 | 73.95 d | 19.3 g | 231.1 g | |
N4 | 70.36 de | 18.3 g | 167.5 i |
Irrigation Amount | Nitrogen Application Rate | Vc (mg kg−1) | Lycopene (mg kg−1) | Soluble Solids (%) | Organic Acid (%) | Soluble Protein (%) |
---|---|---|---|---|---|---|
W1 (0.75 ETc) | N1 | 13.97 g | 22.30 h | 4.77 e | 0.41 g | 15.33 e |
N2 | 14.07 fg | 23.84 gh | 4.87 de | 0.47 def | 16.20 de | |
N3 | 14.91 f | 24.93 fg | 5.55 c | 0.52 bc | 18.53 abcd | |
N4 | 14.51 fg | 23.42 gh | 4.96 de | 0.47 def | 17.10 cde | |
W2 (1.0 ETc) | N1 | 17.15 cd | 29.01 bcde | 5.45 c | 0.45 ef | 17.90 abcde |
N2 | 18.07 ab | 30.77 abc | 6.16 b | 0.53 bc | 18.06 abcd | |
N3 | 18.80 a | 32.57 a | 7.0 a | 0.62 a | 20.13 a | |
N4 | 17.76 bc | 31.20 ab | 6.06 b | 0.56 b | 18.99 abc | |
W3 (1.25 ETc) | N1 | 16.07 e | 27.03 of | 5.11 d | 0.44 f | 17.42 bcde |
N2 | 16.30 de | 28.05 de | 5.63 c | 0.50 cd | 18.37 abcd | |
N3 | 17.02 cd | 29.66 bcd | 6.33 b | 0.55 b | 20.49 a | |
N4 | 16.38 de | 28.42 cde | 5.57 c | 0.48 de | 19.90 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Liu, L.; Chen, S.; Bai, Y.; Li, N. Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato. Water 2022, 14, 3665. https://doi.org/10.3390/w14223665
Yue W, Liu L, Chen S, Bai Y, Li N. Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato. Water. 2022; 14(22):3665. https://doi.org/10.3390/w14223665
Chicago/Turabian StyleYue, Wenjun, Linsong Liu, Si Chen, Yu Bai, and Ningyu Li. 2022. "Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato" Water 14, no. 22: 3665. https://doi.org/10.3390/w14223665