Analysis of Climate-Related Risks for Chile’s Coastal Settlements in the ARClim Web Platform
Abstract
:1. Introduction
1.1. Coastal Flooding at Settlements
1.2. Operational Downtime at Fishing Coves
2. Materials and Methods
2.1. Projections of Changes in Wave Climate, Mean Sea Level, Storm Surge, and Tide
2.1.1. Wave Climate
2.1.2. Sea-Level Rise
2.1.3. Storm Surge
2.1.4. Astronomical Tide
2.2. Flooding Risk of Coastal Settlements
2.2.1. Hazard
2.2.2. Exposure
2.2.3. Sensitivity
2.2.4. Risk
2.3. Operational Downtime Risk of Fishing Coves
2.3.1. Hazard
2.3.2. Exposure
2.3.3. Sensitivity
2.3.4. Risk
3. Results
3.1. Flooding Risk of Coastal Settlements
3.2. Operational Downtime Risk of Fishing Coves
4. Discussion
4.1. Flooding Risk of Coastal Settlements
4.2. Operational Downtime Risk of Fishing Coves
4.3. Broader Aspects of ARClim
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MMA. Framework Law on Climate Change (Law 21,455) Was Enacted in Chile. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1177286 (accessed on 12 October 2022).
- Pica-Téllez, A.; Garreaud, R.; Meza, F.; Bustos, S.; Falvey, M.; Ibarra, M.; Duarte, K.; Ormazábal, R.; Dittborn, R.; Silva, I. Informe Proyecto ARClim: Atlas de Riesgos Climáticos para Chile; Centro de Ciencia del Clima y la Resiliencia, Centro de Cambio Global UC and Meteodata for the Ministerio del Medio Ambiente via La Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Santiago, Chile, 2020. [Google Scholar]
- GIZ; EURAC. Risk Supplement to the Vulnerability Sourcebook. In Guidance on How to Apply the Vulnerability Sourcebook’s Approach with the New IPCC AR5 Concept of Climate Risk; GIZ: Bonn, Germany, 2017. [Google Scholar]
- IPCC. Annex II: Glossary [Möller, V.R., et al. (eds.)]. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Adams, H., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2897–2930. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 12 October 2022).
- Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.; Damian, A.; Gallardo, L.; Garreaud, R.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by long term observations and climate model simulations. Elem. Sci. Anth. 2018, 6, 74. [Google Scholar] [CrossRef]
- Winckler, P.; Aguirre, C.; Farías, L.; Contreras-López, M.; Masotti, I. Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone. Clim. Chang. 2020, 163, 633–652. [Google Scholar] [CrossRef]
- Arns, A.; Dangendorf, S.; Jensen, J.; Talke, S.; Bender, J.; Pattiaratchi, C. Sea-level Rise Induced Amplification of Coastal Protection Design Heights. Sci. Rep. 2017, 7, 40171. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.W.; Sayers, P.B.; Dawson, R.J. National-scale assessment of current and future flood risk in England and Wales. Nat. Hazards 2005, 36, 147–164. [Google Scholar] [CrossRef]
- Mokrech, M.; Nicholls, R.J.; Richards, J.A.; Henriques, C.; Holman, I.P.; Shackley, S. Regional impact assessment of flooding under future climate and socio-economic scenarios for East Anglia and North West England. Clim. Chang. 2008, 90, 31–55. [Google Scholar] [CrossRef]
- Heberger, M.; Cooley, H.; Herrera, P.; Gleick, P.H.; Moore, E. Potential impacts of increased coastal flooding in California due to sea-level rise. Clim. Chang. 2011, 109, 229–249. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Díaz-Simal, P.; Izaguirre, C.; Camus, P. Multi-sectoral, high-resolution assessment of climate change consequences of coastal flooding. Clim. Chang. 2017, 145, 431–444. [Google Scholar] [CrossRef]
- Winckler, P.; Contreras-López, M.; Campos-Caba, R.; Beyá, J.; Molina, M. El temporal del 8 de agosto de 2015 en las regiones de Valparaíso y Coquimbo, Chile Central. Lat. Am. J. Aquat. 2017, 45, 622–648. [Google Scholar] [CrossRef]
- Carvajal, M.; Contreras-López, M.; Winckler, P.; Sepúlveda, I. Meteotsunamis Occurring Along the Southwest Coast of South America During an Intense Storm. Pure Appl. Geophys. 2017, 174, 3313–3323. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Winckler, P.; Esparza, C.; Mora, J.; Melo, O.; Bambach, N.; Contreras-López, M.; Sactic, M.I. Impacts in ports on a tectonically active coast for climate-driven projections under the RCP 8.5 scenario: 7 chilean ports under scrutiny. Coast. Eng. 2022, 64, 387–405. [Google Scholar] [CrossRef]
- MMA. Volumen 7 Vulnerabilidad y Riesgo en Caletas Pesqueras. In Determinación del Riesgo de los Impactos del Cambio Climático en las Costas de Chile; Ministerio del Medio Ambiente: Santiago, Chile, 2019. [Google Scholar]
- Harley, M. Coastal Strom Definition. In Coastal Storms: Processes and Impacts; Ciavola, P., Coco, G., Eds.; John Wiley and P. Sons.: New York, NY, USA, 2017; pp. 1–19. ISBN 978-1-118-93710-5. [Google Scholar]
- Carvajal, M.; Winckler, P.; Garreaud, R.; Igualt, F.; Contreras-López, M.; Averil, P.; Cisternas, M.; Gubler, A.; Breuer, W. Extreme sea levels in Rapa Nui (Easter Island) during intense Atmospheric Rivers. Nat. Hazards 2021, 106, 1619–1637. [Google Scholar] [CrossRef]
- Camus, P.; Losada, I.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J. Statistical Wave Climate Projections for Coastal Impact Assessments. Earth’s Future 2017, 5, 918–933. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate Change Risk to Global Port Operations. Nat. Clim. Chang. 2021, 11, 14–21. [Google Scholar] [CrossRef]
- Tolman, H. User Manual and System Documentation of WAVEWATCH III R Version 4.18; Technical Note; Environmental Modeling Center, Marine Modeling and Analysis Branch: Washington, DC, USA, 2014. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Church, J.; Clark, P.; Cazenave, A.; Gregory, J.; Jevrejeva, S.; Merrifield, M.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; et al. Sea Level Change, Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; Volume 13, pp. 1137–1216. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 12 October 2022).
- Hemer, M.A.; Trenham, C.E. Evaluation of a CMIP5 Derived Dynamical Global Wind Wave Climate Model Ensemble. Ocean Model. 2016, 103, 190–203. [Google Scholar] [CrossRef] [Green Version]
- NGDC. 2-minute Gridded Global Relief Data (ETOPO2) v2. National Geophysical Data Center, NOAA. Available online: https://www.ngdc.noaa.gov/mgg/global/etopo2.html (accessed on 14 March 2020). [CrossRef]
- Wessel, P.; Smith, W.H. A Global, Self-consistent, Hierarchical, High-resolution Shoreline Database. J. Geophys. Res. Solid Earth 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Beya, J.; Álvarez, M.; Gallardo, A.; Hidalgo, H.; Winckler, P. Generation and Validation of the Chilean Wave Atlas Database. Ocean Model. 2017, 116, 16–32. Available online: https://oleaje.uv.cl/descargas.html (accessed on 12 October 2022). [CrossRef]
- Lemos, G.; Menendez, M.; Semedo, A.; Camus, P.; Hemer, M.; Dobrynin, M.; Miranda, P.M. On the Need of Bias Correction Methods for Wave Climate Projections. Glob. Planet Chang. 2020, 186, 103109. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef] [Green Version]
- Integrated Climate Data Center; Hamburg University. THREDDS Data Server. Available online: https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/ar5_sea_level_rise/catalog.html (accessed on 14 March 2020).
- Slangen, A.B.A.; Carson, M.; Katsman, C.A.; Van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D. Projecting twenty-first century regional sea-level changes. Clim. Chang. 2014, 124, 317–332. [Google Scholar] [CrossRef]
- CEPAL. Efectos del Cambio Climático en la costa de América Latina y el Caribe. Dinámicas, Tendencias y Variabilidad Climática. p. 265. Available online: https://www.cepal.org/es/publicaciones/3955-efectos-cambio-climatico-la-costa-america-latina-caribe-dinamicas-tendencias (accessed on 12 October 2022).
- SHOA. Tablas de Marea de la Costa de Chile 2022. SHOA Pub. 3009. Available online: http://www.shoa.cl (accessed on 12 October 2022).
- MMA. Volumen 2: Exposición, en “Determinación del Riesgo de los Impactos del Cambio Climático en las costas de Chile”; Ministerio del Medio Ambiente: Santiago, Chile, 2019. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H., Jr. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- INE. Ciudades, Pueblos, Aldeas y Caseríos 2019; Instituto Nacional de Estadística: Santiago de Chile, Chile, 2019. [Google Scholar]
- SERNAPESCA. Desembarques Artesanales por Región, Caleta, Especie. 2017. Available online: www.sernapesca.cl (accessed on 12 October 2022).
- Massel, S. Ocean Surface Waves: Their Physics and Prediction; Advanced Series on Ocean Engineering; World Scientific Publishing Company: Singapore, 1996; Volume 11, p. 491. [Google Scholar]
- Giesecke, A.; Capera, A.G.; Leschiutta, I.; Migliorini, E.; Valverde, L.R. The CERESIS Earthquake Catalogue and Database of the Andean Region: Background, Characteristics and Examples of Use. Ann. Geophys. 2004, 47, 421–435. [Google Scholar] [CrossRef]
- Plafker, G.; Savage, J.C. Mechanism of the Chilean Earthquakes of May 21 and 22, 1960. Geol. Soc. Am. Bull. 1970, 81, 1001–1030. [Google Scholar] [CrossRef]
- Fritz, H.M.; Petroff, C.M.; Catalán, P.A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Synolakis, C.E. Field Survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys. 2011, 168, 1989–2010. [Google Scholar] [CrossRef]
- Poulos, A.; Monsalve, M.; Zamora, N.; de la Llera, J.C. An Updated Recurrence Model for Chilean Subduction Seismicity and Statistical Validation of Its Poisson Nature. Bull. Seismol. Soc. Am. 2019, 109, 66–74. [Google Scholar] [CrossRef]
- Martínez, C.; Winckler, P.; Agredano, R.; Esparza, C.; Torres, I.; Contreras-López, M. Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case. Prog. Phys. Geogr. Earth Environ. 2021, 46, 250–271. [Google Scholar] [CrossRef]
- SHOA. Catálogo de Cartas y Publicaciones Náuticas. Pub. SHOA 3000. Available online: https://shoabucket.s3.amazonaws.com/shoa.cl/documentos/publicaciones/3000.pdf (accessed on 12 October 2022).
Field | Description | Example |
---|---|---|
ID | ID001 | |
Fishing cove | Name | Arica |
Latitude | In degrees | −18.47402 |
Longitude | In degrees | −70.321417 |
Municipality | Name | Arica |
Region | Name | Arica y Parinacota |
Category | City/Town/Village/Hamlet | City |
Type | Urban/Rural | Urban |
Area | In km2 | 43.51 |
Population | In inhabitants | 202,131 |
Houses | In units | 65,888 |
Category | Type | Inhabitants | Conditions | |
---|---|---|---|---|
City | 0.00 | Urban | >5000 | - |
1001–5000 | Regional or provincial capital | |||
Town | 0.25 | Urban | 2001–5000 | - |
1001–2000 | Less than 50% of workforce develop primary activities | |||
Village | 0.50 | Rural | 301–2000 | - |
1001–2000 | Less than 50% of workforce develop primary activities | |||
Hamlet | 1.00 | Rural | <301 | - |
Field | Description | Example |
---|---|---|
ID | ID001 | |
Fishing cove | Name | Arica |
Latitude | In degrees | −18.47402 |
Longitude | In degrees | −70.321417 |
Municipality | Name | Arica |
Region | Name | Arica y Parinacota |
Type | Urban/Rural | Urban |
Number of total fishers | 1664 | |
Number of gleaners | 320 | |
Number of fin-fishers | 1344 | |
Number of vessels | 221 | |
Number of vessels with | 42 | |
Number of vessels with | 179 | |
Existence of artificial shelter; yes (1)/no (0) | 0 | |
Existence of natural shelter; yes (1)/no (0) | 1 | |
Existence of berthing facilities; yes (1)/no (0) | 0 | |
Existence of TURF; yes (1)/no (0) | 0 |
P (%) | Downtime (h/Year) | |||||
---|---|---|---|---|---|---|
1985–2004 | 2026–2045 | Change | 1985–2004 | 2026–2045 | Change | |
Latitude (° S) | (%) | (%) | ||||
19 | 3.49 | 3.42 | −0.07 | 306 | 300 | −6 |
21 | 4.82 | 5.08 | 0.26 | 422 | 445 | 23 |
23 | 8.99 | 9.82 | 0.83 | 788 | 860 | 73 |
25 | 11.46 | 12.19 | 0.73 | 1004 | 1068 | 64 |
27 | 22.15 | 22.7 | 0.55 | 1940 | 1989 | 48 |
29 | 21.26 | 22.28 | 1.02 | 1862 | 1952 | 89 |
31 | 28.65 | 29.43 | 0.78 | 2510 | 2578 | 68 |
33 | 37.91 | 39.05 | 1.14 | 3321 | 3421 | 100 |
35 | 43.77 | 44.4 | 0.63 | 3834 | 3889 | 55 |
37 | 55.5 | 55.19 | −0.31 | 4862 | 4835 | −27 |
39 | 59.11 | 58.61 | −0.50 | 5178 | 5134 | −44 |
41 | 71.33 | 70.89 | −0.44 | 6249 | 6210 | −39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winckler, P.; Contreras-López, M.; Garreaud, R.; Meza, F.; Larraguibel, C.; Esparza, C.; Gelcich, S.; Falvey, M.; Mora, J. Analysis of Climate-Related Risks for Chile’s Coastal Settlements in the ARClim Web Platform. Water 2022, 14, 3594. https://doi.org/10.3390/w14223594
Winckler P, Contreras-López M, Garreaud R, Meza F, Larraguibel C, Esparza C, Gelcich S, Falvey M, Mora J. Analysis of Climate-Related Risks for Chile’s Coastal Settlements in the ARClim Web Platform. Water. 2022; 14(22):3594. https://doi.org/10.3390/w14223594
Chicago/Turabian StyleWinckler, Patricio, Manuel Contreras-López, René Garreaud, Francisco Meza, Cristián Larraguibel, César Esparza, Stefan Gelcich, Mark Falvey, and Javiera Mora. 2022. "Analysis of Climate-Related Risks for Chile’s Coastal Settlements in the ARClim Web Platform" Water 14, no. 22: 3594. https://doi.org/10.3390/w14223594
APA StyleWinckler, P., Contreras-López, M., Garreaud, R., Meza, F., Larraguibel, C., Esparza, C., Gelcich, S., Falvey, M., & Mora, J. (2022). Analysis of Climate-Related Risks for Chile’s Coastal Settlements in the ARClim Web Platform. Water, 14(22), 3594. https://doi.org/10.3390/w14223594