A Dual Media Filter using Zeolite and Mortar for the Efficient Removal of Heavy Metals in Stormwater Runoff
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Continuous Experiments
2.2.1. Removal of Cu2+ by Various Types of Filter Media
2.2.2. Removal of Cu2+ in Mortar/Na-Zeolite Dual Filter Media
2.2.3. Removal of Heavy Metals Mixture by Mortar/Na-Zeolite Dual Media
3. Results
3.1. Effects of Filter Media on Cu2+ Removal
3.2. Effects of Mortar Amount on the Cu2+ Removal in Dual Media
3.3. Removal of Heavy Metals Mixture by Mortar/Na-Zeolite Dual Media
3.3.1. Removal of Heavy Metals Mixture in Mortar Layer
3.3.2. Removal of Heavy Metals Mixture in the Entire Layers of Mortar/Na-Zeolite
3.3.3. Contribution of Each Layer in Mortar/Na-Zeolite Dual Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, D.-G.; Ko, S.-O. Road-Deposited Sediments Mediating the Transfer of Anthropogenic Organic Matter to Stormwater Runoff. Environ. Geochem. Health 2021, 43, 3287–3301. [Google Scholar] [CrossRef] [PubMed]
- Baum, P.; Kuch, B.; Dittmer, U. Adsorption of Metals to Particles in Urban Stormwater Runoff—Does Size Really Matter? Water 2021, 13, 309. [Google Scholar] [CrossRef]
- Wijeyawardana, P.; Nanayakkara, N.; Gunasekara, C.; Karunarathna, A.; Law, D.; Pramanik, B.K. Removal of Cu, Pb and Zn from Stormwater Using an Industrially Manufactured Sawdust and Paddy Husk Derived Biochar. Environ. Technol. Innov. 2022, 28, 102640. [Google Scholar] [CrossRef]
- Hwang, C.-C.; Weng, C.-H. Effects of Rainfall Patterns on Highway Runoff Pollution and Its Control. Water Environ. J. 2015, 29, 214–220. [Google Scholar] [CrossRef]
- Kayhanian, M.; Singh, A.; Suverkropp, C.; Borroum, S. Impact of Annual Average Daily Traffic on Highway Runoff Pollutant Concentrations. J. Environ. Eng. 2003, 129, 975–990. [Google Scholar] [CrossRef]
- Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of Highway Runoff Characteristics: Comparative Analysis and Universal Implications. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef]
- United States Department of Transportation (USDOT) and Federal Highway Administration (FHWA). Eisenhower Interstate Highway System Website. Available online: http://www.Fhwa.Dot.Gov/Interstate/Homepage.Cfm (accessed on 20 June 2017).
- Eriksson, E.; Baun, A.; Scholes, L.; Ledin, A.; Ahlman, S.; Revitt, M.; Noutsopoulos, C.; Mikkelsen, P.S. Selected Stormwater Priority Pollutants—A European Perspective. Sci. Total Environ. 2007, 383, 41–51. [Google Scholar] [CrossRef]
- Lee, J.; Lee, M. Stormwater Runoff Treatment Filtration System and Backwashing System. Water Sci. Technol. 2019, 79, 771–778. [Google Scholar] [CrossRef]
- Sharma, R.; Vymazal, J.; Malaviya, P. Application of Floating Treatment Wetlands for Stormwater Runoff: A Critical Review of the Recent Developments with Emphasis on Heavy Metals and Nutrient Removal. Sci. Total Environ. 2021, 777, 146044. [Google Scholar] [CrossRef]
- Korea Office of Prime Minister; Ministry for Food, Agriculture, Forestry and Fisheries; Korea Ministry of Knowledge Economy; Korea Ministry of Environment; Korea Ministry of Infrastructure and Transport; Korea Nation Fire Agency; Korea Rural Development Administration; Korea Forest Service. The Third Comprehensive Non-Point Sources Management Plan (2021−2025); Korea Ministry of Environment: Sejong, Korea, 2020. (In Korean)
- Bardin, J.P.; Gautier, A.; Barraud, S.; Chocat, B. The Purification Performance of Infiltration Basins Fitted with Pretreatment Facilities: A Case Study. Water Sci. Technol. 2001, 43, 119–128. [Google Scholar] [CrossRef][Green Version]
- Hossain, M.A.; Furumai, H.; Nakajima, F.; Aryal, R.K. Heavy Metals Speciation in Soakaways Sediment and Evaluation of Metal Retention Properties of Surrounding Soil. Water Sci. Technol. 2007, 56, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, J.; Dierkes, C.; Göbel, P.; Klinger, C.; Stubbe, H.; Coldewey, W.G. Metal Concentrations in Soil and Seepage Water Due to Infiltration of Roof Runoff by Long Term Numerical Modelling. Water Sci. Technol. 2005, 51, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.; Katz, L.; Taylor, S. Removal of Dissolved Heavy Metals in Highway Runoff. Transp. Res. Rec. J. Transp. Res. Board 2014, 2436, 131–138. [Google Scholar] [CrossRef]
- Na Nagara, V.; Sarkar, D.; Elzinga, E.J.; Datta, R. Removal of Heavy Metals from Stormwater Runoff Using Granulated Drinking Water Treatment Residuals. Environ. Technol. Innov. 2022, 28, 102636. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Davis, A.P. Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff. J. Environ. Eng. 2005, 131, 1521–1531. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C.; Winogradoff, D. Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal. Water Environ. Res. 2003, 75, 73–82. [Google Scholar] [CrossRef]
- Pitcher, S.K.; Slade, R.C.T.; Ward, N.I. Heavy Metal Removal from Motorway Stormwater Using Zeolites. Sci. Total Environ. 2004, 334–335, 161–166. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Yang, L.; Huang, T. Adsorption Characteristics of Construction Waste for Heavy Metals from Urban Stormwater Runoff. Chin. J. Chem. Eng. 2015, 23, 1542–1550. [Google Scholar] [CrossRef]
- Huber, M.; Hilbig, H.; Badenberg, S.C.; Fassnacht, J.; Drewes, J.E.; Helmreich, B. Heavy Metal Removal Mechanisms of Sorptive Filter Materials for Road Runoff Treatment and Remobilization under De-Icing Salt Applications. Water Res. 2016, 102, 453–463. [Google Scholar] [CrossRef]
- Ernst, C.; Katz, L.; Barrett, M. Removal of Dissolved Copper and Zinc from Highway Runoff via Adsorption. J. Sustain. Water Built. Environ. 2016, 2, 04015007. [Google Scholar] [CrossRef]
- Reddy, K.R.; Xie, T.; Dastgheibi, S. Removal of Heavy Metals from Urban Stormwater Runoff Using Different Filter Materials. J. Environ. Chem. Eng. 2014, 2, 282–292. [Google Scholar] [CrossRef]
- Günay, A.; Arslankaya, E.; Tosun, İ. Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.R.; Rubio, J. New Basis for Adsorption of Ionic Pollutants onto Modified Zeolites. Miner. Eng. 2007, 20, 552–558. [Google Scholar] [CrossRef]
- Lee, M.; Saunders, J.A. Effects of PH on Metals Precipitation and Sorption: Field Bioremediation and Geochemical Modeling Approaches. Vadose Zone J. 2003, 2, 177–185. [Google Scholar] [CrossRef]
- Taffarel, S.R.; Rubio, J. On the Removal of Mn2+ Ions by Adsorption onto Natural and Activated Chilean Zeolites. Miner. Eng. 2009, 22, 336–343. [Google Scholar] [CrossRef]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Performance of stormwater detention tanks for urban drainage systems in northern Italy. J. Environ. Manag. 2012, 101, 33–45. [Google Scholar] [CrossRef]
- Kayhanian, M.; Rasa, E.; Vichare, A.; Leatherbarrow, J.E. Utility of Suspended Solid measurements for storm-water runoff treatment. J. Environ. Eng. 2008, 134, 712–721. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. Installation and Operation Manual of Non-Point Pollution Reduction Facility; Korea Ministry of Environment: Sejong, Korea, 2020. (In Korean)
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Khalfa, L.; Sdiri, A.; Bagane, M.; Cervera, M.L. A Calcined Clay Fixed Bed Adsorption Studies for the Removal of Heavy Metals from Aqueous Solutions. J. Clean. Prod. 2021, 278, 123935. [Google Scholar] [CrossRef]
- Suksabye, P.; Thiravetyan, P.; Nakbanpote, W. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith. J. Hazard. Mater. 2008, 160, 56–62. [Google Scholar] [CrossRef]
- Sizirici, B.; Yildiz, I. Simultaneous removal of organics and metals in fixed bed using gravel and iron oxide coated gravel. Results Eng. 2020, 5, 100093. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Abdul-Kareem, M.B.; Mohammed, A.K.; Naushad, M.; Ghfar, A.A.; Ahamad, T. Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. J. Water Process Eng. 2020, 36, 101373. [Google Scholar] [CrossRef]
- Tasharrofi, S.; Rouzitalab, Z.; Maklavany, D.M.; Esmaeili, A.; Rabieezadeh, M.; Askarieh, M.; Rashidi, A.; Taghdisian, H. Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs. Sci. Total Environ. 2020, 736, 139570. [Google Scholar] [CrossRef] [PubMed]
- Winston, R.J.; Hunt, W.F. Characterizing Runoff from Roads: Particle Size Distributions, Nutrients, and Gross Solids. J. Environ. Eng. 2017, 143, 04016074. [Google Scholar] [CrossRef]
- Saadi, Z.; Saadi, R.; Fazaeli, R. Fixed-Bed Adsorption Dynamics of Pb (II) Adsorption from Aqueous Solution Using Nanostructured γ-Alumina. J. Nanostruct. Chem. 2013, 3, 48. [Google Scholar] [CrossRef]
- Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed.; Translated from the French by James A. Franklin (except Sections I, III 5 and III 6, Which Were Originally Written in English); National Association of Corrosion Engineers: Houston, TX, USA, 1974. [Google Scholar]
- Haile, T.M.; Fuerhacker, M. Simultaneous Adsorption of Heavy Metals from Roadway Stormwater Runoff Using Different Filter Media in Column Studies. Water 2018, 10, 1160. [Google Scholar] [CrossRef]
- Esfandiar, N.; Suri, R.; McKenzie, E.R. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. J. Hazard. Mater. 2022, 423, 126938. [Google Scholar] [CrossRef]
- Sounthararajah, D.P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment. Chemosphere 2017, 168, 467–473. [Google Scholar] [CrossRef]
Condition | Sand | Na-Zeolite | Mortar/Na-Zeolite |
---|---|---|---|
Depth (cm) | 8.2 | 8.2 | 1 + 8.2 |
EBCT (minute) | 1.8 | 1.8 | 0.2 + 1.8 |
Mass (g) | 33.05 | 17.84 | 3.18 + 17.84 |
Initial Cu2+ (mg/L) | 100 | 100 | 100 |
Condition | Mortar/Na-Zeolite, 0/1.8 Min | Mortar/NaCl- Zeolite, 0.31/1.8 Min | Mortar/NaCl- Zeolite, 0.62/1.8 Min | Mortar/NaCl- Zeolite, 1.25/1.8 Min | |
---|---|---|---|---|---|
Depth (cm) | Mortar | 0 | 2 | 4 | 8 |
Na-zeolite | 11 | 11 | 11 | 11 | |
Total | 11 | 13 | 15 | 19 | |
EBCT (minute) | Mortar | 0 | 0.3 | 0.6 | 1.3 |
Na-zeolite | 1.8 | 1.8 | 1.8 | 1.8 | |
Total | 1.8 | 2.1 | 2.4 | 3.1 | |
Mass (g) | Mortar | 0 | 6.07 | 12.08 | 20.83 |
Na-zeolite | 17.84 | 17.84 | 17.84 | 17.84 | |
Total | 17.84 | 23.91 | 29.92 | 38.67 |
Condition | Mortar/Na-Zeolite, 0.33/1.47 Min | Mortar/Na-Zeolite, 0.65/1.15 Min | Mortar/Na-Zeolite, 1.31/0.49 Min | |
---|---|---|---|---|
Depth (cm) | Mortar | 2 | 4 | 8 |
Na-zeolite | 9 | 7 | 3 | |
Total | 11 | 11 | 11 | |
EBCT (min) | Mortar | 0.33 | 0.65 | 1.31 |
Na-zeolite | 1.47 | 1.15 | 0.49 | |
Total | 1.80 | 1.80 | 1.80 | |
Mass (g) | Mortar | 13.7 | 10.6 | 4.6 |
Na-zeolite | 6.0 | 11.9 | 23.8 | |
Total | 19.6 | 22.5 | 28.4 |
Sand | Na-Zeolite | Mortar/Na-Zeolite | |
---|---|---|---|
kT (×10−5 L/min·mg) | 278.6 | 11.7 | 8.5 |
qe (mg/g) | 0.35 | 16.57 | 17.78 |
r2 | 0.995 | 0.988 | 0.986 |
qL (g/L) | 0.79 | 20.40 | 22.99 |
Mortar/NaCl- Zeolite, 0/1.8 Min | Mortar/NaCl- Zeolite, 0.31/1.8 Min | Mortar/NaCl- Zeolite, 0.62/1.8 Min | Mortar/NaCl- Zeolite, 1.25/1.8 Min | |
---|---|---|---|---|
kT (L/min·mg) | 0.106 | 0.082 | 0.069 | 0.047 |
qe (mg/g) | 22.0 | 20.5 | 22.7 | 35.6 |
r2 | 0.986 | 0.984 | 0.998 | 0.998 |
qt (mg) | 392.6 | 490.5 | 679.6 | 1378.1 |
qL (g/L) | 27.1 | 28.8 | 34.8 | 56.2 |
Mortar/Na-Zeolite, 0.33/1.47 Min | Mortar/Na-Zeolite, 0.65/1.15 Min | Mortar/Na-Zeolite, 1.31/0.49 Min | ||
---|---|---|---|---|
Cu2+ | kT (L/min·mg) | 0.589 | 0.689 | 0.680 |
qe (mg/g) | 8.758 | 5.174 | 3.265 | |
r2 | 0.974 | 0.940 | 0.956 | |
qt (mg) | 45.5 | 53.8 | 67.9 | |
qL (g/L) | 12.9 | 7.6 | 4.8 | |
Zn2+ | kT (L/min·mg) | 3.505 | 2.599 | 5.141 |
qe (mg/g) | 3.354 | 3.849 | 2.204 | |
r2 | 0.997 | 0.997 | 0.998 | |
qt (mg) | 17.4 | 40.0 | 45.8 | |
qL (g/L) | 4.9 | 5.7 | 3.2 | |
Fe3+ | kT (L/min·mg) | 0.267 | 0.220 | 0.192 |
qe (mg/g) | 20.995 | 12.046 | 6.539 | |
r2 | 0.961 | 0.942 | 0.905 | |
qt (mg) | 109.2 | 125.3 | 136.0 | |
qL (g/L) | 30.9 | 17.7 | 9.6 | |
Ni2+ | kT (L/min·mg) | 1.225 | 0.885 | 2.013 |
qe (mg/g) | 5.189 | 3.922 | 2.385 | |
r2 | 0.995 | 0.984 | 0.994 | |
qt (mg) | 27.0 | 40.8 | 49.6 | |
qL (g/L) | 7.6 | 5.8 | 3.5 |
Mortar/Na-Zeolite, 0.33/1.47 Min | Mortar/Na-Zeolite, 0.65/1.15 Min | Mortar/Na-Zeolite, 1.31/0.49 Min | ||
---|---|---|---|---|
Cu2+ | kT (L/min·mg) | 1.709 | 0.823 | 0.982 |
qe (mg/g) | 3.461 | 3.556 | 3.224 | |
r2 | 0.994 | 0.988 | 0.997 | |
qt (mg) | 58.5 | 69.3 | 79.6 | |
qL (g/L) | 3.0 | 3.6 | 4.1 | |
Zn2+ | kT (L/min·mg) | 6.195 | 4.034 | 1.665 |
qe (mg/g) | 2.837 | 2.538 | 2.311 | |
r2 | 0.999 | 1.000 | 0.984 | |
qt (mg) | 47.9 | 49.5 | 57.1 | |
qL (g/L) | 2.5 | 2.5 | 2.9 | |
Fe3+ | kT (L/min·mg) | 0.367 | 0.331 | 0.359 |
qe (mg/g) | 8.287 | 8.365 | 6.775 | |
r2 | 0.846 | 0.960 | 0.860 | |
qt (mg) | 161.6 | 141.4 | 167.3 | |
qL (g/L) | 8.3 | 7.3 | 8.6 | |
Ni2+ | kT (L/min·mg) | 1.793 | 1.311 | 8.269 |
qe (mg/g) | 2.750 | 2.594 | 2.114 | |
r2 | 0.994 | 0.996 | 0.990 | |
qt (mg) | 46.5 | 50.6 | 52.2 | |
qL (g/L) | 2.4 | 2.6 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-G.; Ko, S.-O. A Dual Media Filter using Zeolite and Mortar for the Efficient Removal of Heavy Metals in Stormwater Runoff. Water 2022, 14, 3567. https://doi.org/10.3390/w14213567
Kim D-G, Ko S-O. A Dual Media Filter using Zeolite and Mortar for the Efficient Removal of Heavy Metals in Stormwater Runoff. Water. 2022; 14(21):3567. https://doi.org/10.3390/w14213567
Chicago/Turabian StyleKim, Do-Gun, and Seok-Oh Ko. 2022. "A Dual Media Filter using Zeolite and Mortar for the Efficient Removal of Heavy Metals in Stormwater Runoff" Water 14, no. 21: 3567. https://doi.org/10.3390/w14213567
APA StyleKim, D.-G., & Ko, S.-O. (2022). A Dual Media Filter using Zeolite and Mortar for the Efficient Removal of Heavy Metals in Stormwater Runoff. Water, 14(21), 3567. https://doi.org/10.3390/w14213567