Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Synthetic Rainwater Runoff
2.3. Soil and Water Sampling
2.4. Microbial Analysis
2.4.1. High-Throughput Sequencing and Data Processing
2.4.2. Quantitative Real-Time PCR
2.5. Chemical Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Richness and Diversity of Microbial Community
3.2. Quantification of and Variation in Nitrification and Denitrification Functional Genes
3.3. Environmental Factors Affecting the Abundance of Functional Genes
4. Conclusions
- (1)
- The richness and diversity of microbes in the gravel layer showed the highest variation during a dry period, and the microbial community structure of the gravel layer at phylum or genus level was also distinguished from those of the other three layers. With the extension in drought time, the amount of microbial species shared by all four layers increased, showing a convergent succession of microorganisms.
- (2)
- The abundance of nitrification and denitrification functional genes mainly decreased with the depth of soil, and the abundance of denitrifying genes was higher than that of nitrifying genes. The variations in functional genes in different layers during the dry period indicated that the most active period of denitrification in the submerged zone may be 0–48 h after rainfall, and nitrification continued to occur throughout the dry period, especially in the UL and LL.
- (3)
- The abundance of nitrification and denitrification functional genes was significantly affected by TOC, ammonia nitrogen concentration and nitrate nitrogen concentration. Among the functional genes studied, amoA-AOA gene and nirK gene were more susceptible to environmental factors in this system.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Target Gene | Primer | 5′-3′ |
---|---|---|
amoA-AOA | Arch-amoAF | STAATGGTCTGGCTTAGACG |
Arch-amoAR | GCGGCCATCCATCTGTATGT | |
amoA-AOB | amoA-1F | GGGGTTTCTACTGGTGGT |
amoA-2R | CCCCTCKGSAAAGCCTTCTTC | |
narG | narG-f | TCGCCSATYCCGGCSATGTC |
narG-r | GAGTTGTACCAGTCRGCSGAYTCSG | |
nirK | FlaCu | ATCATGGTSCTGCCGCG |
R3Cu | GCCTCGATCAGRTTRTGGTT | |
nirS | Cd3aF | GTSAACGTSAAGGARACSGG |
R3cdR | GASTTCGGRTGSGTCTTGA | |
nosZ | nosZ-1F | CGYTGTTCMTCGACAGCCAG |
nosZ-1622R | CGSACCTTSTTGCCSTYGCG |
Sampling Periods | Sampling Layers | Sample Number | Drought Time | OTUs | Chao1 Index | Shannon Index | Coverage Rate % |
---|---|---|---|---|---|---|---|
Before rainfall | Upper layer | U-BR | - | 1926 | 2313.69 | 5.35 | 98% |
Lower layer | L-BR | - | 1959 | 2488.94 | 5.63 | 98% | |
Sand layer | S-BR | - | 2058 | 2603.01 | 5.07 | 98% | |
After rainfall | Upper layer | U4 | 4 h | 1846 | 2096.44 | 6.01 | 99% |
U8 | 8 h | 1964 | 2699.46 | 5.36 | 98% | ||
U12 | 12 h | 1999 | 2111.04 | 4.56 | 99% | ||
U24 | 24 h | 1747 | 2351.10 | 5.74 | 98% | ||
U48 | 48 h | 2106 | 2728.91 | 5.52 | 98% | ||
U72 | 72 h | 1511 | 2663.49 | 4.98 | 98% | ||
U120 | 120 h | 1849 | 2387.02 | 5.33 | 99% | ||
U168 | 168 h | 2158 | 2379.72 | 5.62 | 98% | ||
After rainfall | Lower layer | L4 | 4 h | 2011 | 2646.28 | 5.59 | 98% |
L8 | 8 h | 1841 | 2285.22 | 5.62 | 98% | ||
L12 | 12 h | 1916 | 2665.33 | 5.41 | 98% | ||
L24 | 24 h | 2120 | 2094.33 | 3.35 | 98% | ||
L48 | 48 h | 1848 | 2476.22 | 5.73 | 98% | ||
L72 | 72 h | 2062 | 2505.95 | 4.88 | 98% | ||
L120 | 120 h | 1478 | 2144.66 | 4.59 | 98% | ||
L168 | 168 h | 2000 | 2463.10 | 5.63 | 99% | ||
After rainfall | Sand layer | S4 | 4 h | 1975 | 2817.94 | 5.33 | 99% |
S8 | 8 h | 1683 | 2581.28 | 4.66 | 98% | ||
S12 | 12 h | 2080 | 2277.11 | 5.64 | 99% | ||
S24 | 24 h | 2271 | 2551.69 | 5.55 | 98% | ||
S48 | 48 h | 1928 | 2602.53 | 5.08 | 98% | ||
S72 | 72 h | 1791 | 2423.27 | 5.80 | 98% | ||
S120 | 120 h | 1959 | 2391.61 | 5.87 | 98% | ||
S168 | 168 h | 1989 | 2587.41 | 5.90 | 98% | ||
After rainfall | Gravel layer | G24 | 24 h | 1865 | 1428.01 | 2.69 | 99% |
G48 | 48 h | 2428 | 2359.39 | 3.95 | 99% | ||
G72 | 72 h | 1969 | 2382.69 | 4.50 | 99% | ||
G120 | 120 h | 614 | 2521.88 | 6.01 | 99% |
References
- Payne, E.G.I.; Fletcher, T.D.; Cook, P.L.M.; Deletic, A.; Hatt, B.E. Processes and Drivers of Nitrogen Removal in Stormwater Biofiltration. Crit. Rev. Environ. Sci. Technol. 2014, 44, 796–846. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- McPhillips, L.; Goodale, C.; Walter, M.T. Nutrient Leaching and Greenhouse Gas Emissions in Grassed Detention and Bioretention Stormwater Basins. J. Sustain. Water Built Environ. 2018, 4, 04017014. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- LeFevre, G.H.; Paus, K.H.; Natarajan, P.; Gulliver, J.S.; Novak, P.J.; Hozalski, R.M. Review of Dissolved Pollutants in Urban Storm Water and Their Removal and Fate in Bioretention Cells. J. Environ. Eng. 2015, 141, 04014050. [Google Scholar] [CrossRef]
- Chen, X.L.; Peltier, E.; Sturm, B.S.M.; Young, C.B. Nitrogen removal and nitrifying and denitrifying bacteria quantification in a stormwater bioretention system. Water Res. 2013, 47, 1691–1700. [Google Scholar] [CrossRef]
- Waller, L.J.; Evanylo, G.K.; Krometis, L.-A.H.; Strickland, M.S.; Wynn-Thompson, T.; Badgley, B.D. Engineered and Environmental Controls of Microbial Denitrification in Established Bioretention Cells. Environ. Sci. Technol. 2018, 52, 5358–5366. [Google Scholar] [CrossRef]
- Wan, Z.; Li, T.; Shi, Z. A layered bioretention system for inhibiting nitrate and organic matters leaching. Ecol. Eng. 2017, 107, 233–238. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Li, Y.; Wang, D.; Zhang, J.; Zhao, L. Assessment on the cumulative effect of pollutants and the evolution of micro-ecosystems in bioretention systems with different media. Ecotoxicol. Environ. Saf. 2021, 228, 112957. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Elliott, E.T.; Merckx, R.; Paustian, K. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Paustian, K.; Merckx, R. Importance of macroaggregate dynamics in controlling soil carbon stabilization: Short-term effects of physical disturbance induced by dry–wet cycles. Soil Biol. Biochem. 2001, 33, 2145–2153. [Google Scholar] [CrossRef]
- Wang, L.; Hao, D.-C.; Fan, S.; Xie, H.; Bao, X.; Jia, Z.; Wang, L. N2O Emission and Nitrification/Denitrification Bacterial Communities in Upland Black Soil under Combined Effects of Early and Immediate Moisture. Agriculture 2022, 12, 330. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Kong, Z.; Gu, L.; Fang, J.; Chai, H. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment. J. Water Process Eng. 2020, 37, 101414. [Google Scholar] [CrossRef]
- He, K.M.; Qin, H.P.; Wang, F.; Ding, W.; Yin, Y.X. Importance of the Submerged Zone during Dry Periods to Nitrogen Removal in a Bioretention System. Water 2020, 12, 876. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, F.; Xu, S.; Sun, W.; Wang, Y.; Ji, M. Woodchips bioretention column for stormwater treatment: Nitrogen removal performance, carbon source and microbial community analysis. Chemosphere 2021, 285, 131519. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Duan, H. A sulfur-limestone bioretention system for stormwater treatment: Nitrogen removal performance and microbial community. Sci. Total Environ. 2022, 827, 154301. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Saturation to Improve Pollutant Retention in a Rain Garden. Environ. Sci. Technol. 2006, 40, 1335–1340. [Google Scholar] [CrossRef]
- Søberg, L.C.; Viklander, M.; Blecken, G.-T. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone? Sci. Total Environ. 2017, 579, 1588–1599. [Google Scholar] [CrossRef]
- Zhang, Z.; Rengel, Z.; Liaghati, T.; Antoniette, T.; Meney, K. Influence of plant species and submerged zone with carbon addition on nutrient removal in stormwater biofilter. Ecol. Eng. 2011, 37, 1833–1841. [Google Scholar] [CrossRef]
- Zinger, Y.; Blecken, G.-T.; Fletcher, T.D.; Viklander, M.; Deletić, A. Optimising nitrogen removal in existing stormwater biofilters: Benefits and tradeoffs of a retrofitted saturated zone. Ecol. Eng. 2013, 51, 75–82. [Google Scholar] [CrossRef]
- Kim, H.H.; Seagren, E.A.; Davis, A.P. Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ. Res. 2003, 75, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F.; Qin, H.; Zeng, X.; Li, X.; Yu, S.-L. Effect of Saturated Zone on Nitrogen Removal Processes in Stormwater Bioretention Systems. Water 2018, 10, 162. [Google Scholar] [CrossRef] [Green Version]
- Morse, N.; Payne, E.; Henry, R.; Hatt, B.; Chandrasena, G.; Shapleigh, J.; Cook, P.; Coutts, S.; Hathaway, J.; Walter, M.T.; et al. Plant-Microbe Interactions Drive Denitrification Rates, Dissolved Nitrogen Removal, and the Abundance of Denitrification Genes in Stormwater Control Measures. Environ. Sci. Technol. 2018, 52, 9320–9329. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Luo, J.; Li, L.; Jiang, H.; Sun, X.; Yang, J.; She, W.; Liu, W.; Li, L.; Davis, A.P. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Res. 2021, 209, 117895. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, D.; Li, B.; Zhang, P.; Wang, H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. Bioresour. Technol. 2020, 300, 122682. [Google Scholar] [CrossRef]
- Broman, E.; Zilius, M.; Samuiloviene, A.; Vybernaite-Lubiene, I.; Politi, T.; Klawonn, I.; Voss, M.; Nascimento, F.J.A.; Bonaglia, S. Active DNRA and denitrification in oxic hypereutrophic waters. Water Res. 2021, 194, 116954. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, M.; Li, J.; Lu, A.; Zhong, Z. Bacterial Diversity of Active Sludge in Wastewater Treatment Plant. Earth Sci. Front. 2008, 15, 163–168. [Google Scholar] [CrossRef]
- Ahmed, Z.; Lim, B.-R.; Cho, J.; Song, K.-G.; Kim, K.-P.; Ahn, K.-H. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: Effect of different carbon sources. Water Res. 2008, 42, 198–210. [Google Scholar] [CrossRef]
- Guo, J.H.; Ni, B.J.; Han, X.Y.; Chen, X.M.; Bond, P.; Peng, Y.Z.; Yuan, Z.G. Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing. Enzym. Microb. Technol. 2017, 102, 16–25. [Google Scholar] [CrossRef]
- Luo, J.; Hao, T.; Wei, L.; Mackey, H.R.; Lin, Z.; Chen, G.-H. Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Water Res. 2014, 62, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-S.; Parameswaran, P.; Rittmann, B.E. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge. Bioresour. Technol. 2011, 102, 10266–10272. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dou, Y.; An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 2018, 626, 48–58. [Google Scholar] [CrossRef]
- Li, Q.; Jia, H.; Guo, H.; Zhao, Y.; Zhou, G.; Lim, F.Y.; Guo, H.; Neo, T.H.; Ong, S.L.; Hu, J. Field Study of the Road Stormwater Runoff Bioretention System with Combined Soil Filter Media and Soil Moisture Conservation Ropes in North China. Water 2022, 14, 415. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Sun, Y.; Wang, C. Influence of the cold bottom water on taxonomic and functional composition and complexity of microbial communities in the southern Yellow Sea during the summer. Sci. Total Environ. 2021, 759, 143496. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, Y.; Zhang, B.; Sun, L. Plant rhizosphere, soil microenvironment, and functional genes in the nitrogen removal process of bioretention. Environ. Sci.-Process. Impacts 2019, 21, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Linn, D.M.; Doran, J.W. Aerobic and Anaerobic Microbial Populations in No-till and Plowed Soils. Soil Sci. Soc. Am. J. 1984, 48, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, A.; Or, D. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles—Upscaling an aggregate biophysical model. Glob. Chang. Biol. 2016, 22, 3141–3156. [Google Scholar] [CrossRef]
Functional Genes | pH | Moisture Content | TOC | NH4-N | NO3-N | C/N |
---|---|---|---|---|---|---|
amoA-AOA | −0.137 | −0.134 | 0.642 ** | 0.513 ** | 0.589 ** | 0.120 |
narG | 0.362 | −0.150 | 0.147 | 0.098 | 0.183 | 0.004 |
nirK | −0.110 | −0.156 | 0.623 ** | 0.524 ** | 0.557 ** | −0.133 |
nirS | −0.106 | −0.327 | 0.384 * | 0.358 | 0.403 * | −0.050 |
nosZ | −0.203 | −0.242 | 0.651 ** | 0.456 * | 0.544 ** | −0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xia, C.; Sun, Y.; Ding, W.; Qin, H. Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period. Water 2022, 14, 3503. https://doi.org/10.3390/w14213503
Li X, Xia C, Sun Y, Ding W, Qin H. Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period. Water. 2022; 14(21):3503. https://doi.org/10.3390/w14213503
Chicago/Turabian StyleLi, Xiaoyue, Chenxi Xia, Yuhang Sun, Wei Ding, and Huapeng Qin. 2022. "Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period" Water 14, no. 21: 3503. https://doi.org/10.3390/w14213503
APA StyleLi, X., Xia, C., Sun, Y., Ding, W., & Qin, H. (2022). Characteristics of Nitrifying and Denitrifying Microbes in the Bioretention Cell with Submerged Zone during a Dry Period. Water, 14(21), 3503. https://doi.org/10.3390/w14213503