# Numerical Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Aim and Scope

#### 1.2. Implementation

_{qp}. With this information it is also possible to select the correct correlation for the calculation of the holdup of each phase.

## 2. Experimental Setup

**P1**sensor data is used for this analysis where experimental rig is detailed described in [32,33,34]. For these particularly numerical simulations, the geometry or computational domain were discretized explicitly on the Y-junction supply system to focus computational resources under the evolution of main fluid development. The confluence system was selected and marked as Injection Point illustrated in the close-up Figure 1B. Further details are described in [32].

## 3. Numerical Setup

#### 3.1. Case Study

#### 3.2. Numerical Domain Details

#### 3.3. Numerical Domain Details

- Accuracy in the prediction of two-phase flow. In this case, the high viscous water-oil two-phase because it considers non-interpenetrating phases;
- Utilization of Third-order discretization schemes for phase tracking;
- The high phase reconstruction schemes for the volume fraction;
- More flexibility and efficiency than the finite-difference method. This includes dealing with issues requiring extremely complex free surface configurations;
- It provides a simple and affordable way to monitor phases on three-dimensional grids;
- It runs in high-performance GPUs parallel processing.

#### 3.4. Governing Equations

#### 3.5. Interfacial and Surface Tension Treatment

#### 3.6. Turbulence Model

#### 3.7. Sensitivity Analysis and Validation

^{−5}in 15 s of flow. For this reason and mostly due to the confluence, the development of the flow pattern is not yet constituted.

## 4. Results and Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kowalska, G.; Baj, T.; Kowalski, R.; Szymańska, J. Optimization of Glycerol–Water Extraction of Selected Bioactive Compounds from Peppermint and Common Nettle. Antioxidants
**2021**, 10, 817. [Google Scholar] [CrossRef] [PubMed] - Bertero, L.; DiLullo, A.; Lentini, A.; Terzi, L. Innovative way to produce and transport heavy oil through dispersion in water: Laboratory study and field test results. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 25–28 September 1994; pp. 283–295. [Google Scholar] [CrossRef]
- Brauner, N.; Maron, D.M. Flow pattern transitions in two-phase liquid-liquid flow in horizontal tubes. Int. J. Multiph. Flow
**1992**, 18, 123–140. [Google Scholar] [CrossRef] - Brauner, N.; Ullmann, A. Modeling of phase inversion phenomenon in two-phase pipe flows. Int. J. Multiph. Flow
**2002**, 28, 1177–1204. [Google Scholar] [CrossRef] - Shi, H.; Holmes, J.A.; Durlofsky, L.J.; Aziz, K.; Diaz, L.R.; Alkaya, B.; Oddie, G. Drift-Flux Modeling of Two-Phase Flow in Wellbores. SPE J.
**2005**, 10, 24–33. [Google Scholar] [CrossRef] - Trallero, J.L.; Sarica, C.; Brill, J.P. A Study of Oil/Water Flow Patterns in Horizontal Pipes. SPE Prod. Facil.
**1997**, 12, 165–172. [Google Scholar] [CrossRef] - Rodriguez, I.H.; Yamaguti, H.K.; de Castro, M.S.; Da Silva, M.J.; Rodriguez, O.M.H. Slip ratio in dispersed viscous oil–water pipe flow. Exp. Therm. Fluid Sci.
**2011**, 35, 11–19. [Google Scholar] [CrossRef] - Russell, T.W.F.; Hodgson, G.W.; Govier, G.W. Horizontal pipeline flow of mixtures of oil and water. Can. J. Chem. Eng.
**1959**, 37, 9–17. [Google Scholar] [CrossRef] - Charles, M.E.; Govier, G.W.; Hodgson, G.W. The horizontal pipeline flow of equal density oil-water mixtures. Can. J. Chem. Eng.
**1961**, 39, 27–36. [Google Scholar] [CrossRef] - Arirachakaran, S.; Oglesby, K.D.; Malinowsky, M.S.; Shoham, O.; Brill, J.P. An analysis of oil/water flow phenomena in horizontal pipes. In Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, USA, 13–14 March 1989; pp. 155–167. [Google Scholar] [CrossRef]
- Angeli, P.; Hewitt, G. Flow structure in horizontal oil–water flow. Int. J. Multiph. Flow
**2000**, 26, 1117–1140. [Google Scholar] [CrossRef] - Chen, S.H.; Choi, S.M. Measurement and Interpretation of Curvatures of the Oil–Water Interface in Isometric Bicontinuous Microemulsions. J. Appl. Crystallogr.
**1997**, 30, 755–760. [Google Scholar] [CrossRef] - Kee, K.E.; Babic, M.; Richter, S.; Paolinelli, L.; Li, W.; Nesic, S. Flow patterns and water wetting in gas-oil-water three-phase flo. In Proceedings of the CORROSION 2015, Dallas, TX, USA, 15–19 March 2015; pp. 1–16. [Google Scholar]
- Colombo, L.P.M.; Guilizzoni, M.; Sotgia, G.M.; Bortolotti, S.; Pavan, L. Measurement of the oil holdup for a two-phase oil-water flow through a sudden contraction in a horizontal pipe. J. Physics Conf. Ser.
**2014**, 501, 012015. [Google Scholar] [CrossRef] - Edomwonyi-Otu, L.C.; Angeli, P. Pressure drop and holdup predictions in horizontal oil–water flows for curved and wavy interfaces. Chem. Eng. Res. Des.
**2015**, 93, 55–65. [Google Scholar] [CrossRef] - Ren, G.; Ge, D.; Li, P.; Chen, X.; Zhang, X.; Lu, X.; Sun, K.; Fang, R.; Mi, L.; Su, F. The Flow Pattern Transition and Water Holdup of Gas–Liquid Flow in the Horizontal and Vertical Sections of a Continuous Transportation Pipe. Water
**2021**, 13, 2077. [Google Scholar] [CrossRef] - De la Cruz-Ávila, M.; Carvajal-Mariscal, I.; Klapp, J.; Guzmán, J.E.V. Numerical Study of Multiphase Water–Glycerol Emulsification Process in a Y-Junction Horizontal Pipeline. Energies
**2022**, 15, 2723. [Google Scholar] [CrossRef] - Hosseini, S.M.; Yuki, K.; Hashizume, H. Experimental Investigation of Flow Field Structure in Mixing Tee. J. Fluids Eng.
**2009**, 131, 051103. [Google Scholar] [CrossRef] - Yang, L.; Wang, J.; Ma, Y.; Liu, S.; Tang, J.; Zhu, Y. Oil-Water-Gas Three-Phase Separation in Multitube T-Junction Separators. Water
**2019**, 11, 2655. [Google Scholar] [CrossRef] - Grbčić, L.; Kranjčević, L.; Družeta, S.; Lučin, I. Efficient Double-Tee Junction Mixing Assessment by Machine Learning. Water
**2020**, 12, 238. [Google Scholar] [CrossRef] - Steegmans, M.L.J.; Schroën, K.G.P.H.; Boom, R.M. Microfluidic Y-junctions: A robust emulsification system with regard to junction design. AIChE J.
**2010**, 56, 1946–1949. [Google Scholar] [CrossRef] - Adeosun, J.T.; Lawal, A. Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution. Chem. Eng. Sci.
**2009**, 64, 2422–2432. [Google Scholar] [CrossRef] - Naik-Nimbalkar, V.; Patwardhan, A.; Banerjee, I.; Padmakumar, G.; Vaidyanathan, G. Thermal mixing in T-junctions. Chem. Eng. Sci.
**2010**, 65, 5901–5911. [Google Scholar] [CrossRef] - Wang, L.-Y.; Wu, Y.-X.; Zheng, Z.-C.; Guo, J.; Zhang, J.; Tang, C. Oil-Water two-Phase Flow Inside T-Junction. J. Hydrodyn.
**2008**, 20, 147–153. [Google Scholar] [CrossRef] - Sökmen, C.N. Effect of property variations on the mixing of laminar supercritical water streams in a T-junction. Int. Commun. Heat Mass Transf.
**2011**, 38, 85–92. [Google Scholar] [CrossRef] - Dehbi, A.; de Crécy, F. Validation of the Langevin particle dispersion model against experiments on turbulent mixing in a T-junction. Powder Technol.
**2011**, 206, 312–321. [Google Scholar] [CrossRef] - Sierens, R.; Verhelst, S. Influence of the Injection Parameters on the Efficiency and Power Output of a Hydrogen Fueled Engine. J. Eng. Gas Turbines Power
**2003**, 125, 444–449. [Google Scholar] [CrossRef] - Burlutskii, E. CFD study of oil-in-water two-phase flow in horizontal and vertical pipes. J. Pet. Sci. Eng.
**2018**, 162, 524–531. [Google Scholar] [CrossRef] - Jones, W.; Launder, B. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf.
**1972**, 15, 301–314. [Google Scholar] [CrossRef] - Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.
**1994**, 32, 1598–1605. [Google Scholar] [CrossRef] - Frank, T.; Lifante, C.; Prasser, H.-M.; Menter, F. Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX. Nucl. Eng. Des.
**2010**, 240, 2313–2328. [Google Scholar] [CrossRef] - Noguera, J.F.; Torres, L.; Verde, C.; Guzman, E.; Sanjuan, M. Model for the flow of a water-glycerol mixture in horizontal pipelines. In Proceedings of the 2019 4th Conference on Control and Fault Tolerant Systems (SysTol), Casablanca, Morocco, 18–20 September 2019; pp. 117–122. [Google Scholar] [CrossRef]
- Noguera-Polania, J.F.; Hernández-García, J.; Galaviz-López, D.F.; Torres, L.; Guzmán, J.; Sanjuán-Mejía, M.E.; Jiménez-Cabas, J. Dataset on water–glycerol flow in a horizontal pipeline with and without leaks. Data Brief
**2020**, 31, 105950. [Google Scholar] [CrossRef] - Torres, L.; Noguera, J.; Guzmán-Vázquez, J.E.; Hernández, J.; Sanjuan, M.; Palacio-Pérez, A. Pressure Signal Analysis for the Characterization of High-Viscosity Two-Phase Flows in Horizontal Pipes. J. Mar. Sci. Eng.
**2020**, 8, 1000. [Google Scholar] [CrossRef] - ANSYS Fluent. ANSYS Fluent User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Peters, F.; Arabali, D. Interfacial tension between oil and water measured with a modified contour method. Colloids Surfaces A: Physicochem. Eng. Asp.
**2013**, 426, 1–5. [Google Scholar] [CrossRef] - Hayashi, Y.; Puzenko, A.; Feldman, Y. Slow and fast dynamics in glycerol–water mixtures. J. Non-Crystalline Solids
**2006**, 352, 4696–4703. [Google Scholar] [CrossRef] - Egorov, A.V.; Lyubartsev, A.P.; Laaksonen, A. Molecular Dynamics Simulation Study of Glycerol–Water Liquid Mixtures. J. Phys. Chem. B
**2011**, 115, 14572–14581. [Google Scholar] [CrossRef] - Dashnau, J.L.; Nucci, N.V.; Sharp, K.A.; Vanderkooi, J.M. Hydrogen Bonding and the Cryoprotective Properties of Glycerol/Water Mixtures. J. Phys. Chem. B
**2006**, 110, 13670–13677. [Google Scholar] [CrossRef] - Seveno, E. Towards an adaptive advancing front method. In 6th International Meshing Roundtable; 1997; pp. 349–362. Available online:https://scholar.google.com.hk/scholar?hl=en&as_sdt=0%2C5&q=Seveno%2C+E.+Towards+an+adaptive+advancing+front+method.+In+6th+International+Meshing+Roundtable%3B+Publisher%3A+Location%2C+1997%2C+p.+349%E2%80%9362.&btnG= (accessed on 25 October 2022).
- Ingram, D.; Causon, D.; Mingham, C. Developments in Cartesian cut cell methods. Math. Comput. Simul.
**2003**, 61, 561–572. [Google Scholar] [CrossRef] - Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Hemisphere Publishing Corporation: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys.
**1979**, 32, 101–136. [Google Scholar] [CrossRef] - Muzaferija, S.; Peric, M.; Sames, P.; Schellin, T. A two-fluid Navier-Stokes solver to simulate water entry. In Proceedings of 22nd Symposium on Naval Architecture, 1999; The National Academy Press: Washington, DC, USA, 1999; pp. 638–651. [Google Scholar]
- Waclawczyk, T.; Koronowicz, T. Comparison of cicsam and hric high-resolution schemes for interface capturing. J. Theor. Appl. Mech.
**2008**, 46, 325–345. [Google Scholar] - Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys.
**1992**, 100, 335–354. [Google Scholar] [CrossRef] - Alagbe, S.O. Experimental and Numerical Investigation of High Viscosity Oil-Based Multiphase Flows. Ph.D. Thesis, Cranfield University, Cranfiled, UK, 2013. [Google Scholar]
- Nädler, M.; Mewes, D. Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes. Int. J. Multiph. Flow
**1997**, 23, 55–68. [Google Scholar] [CrossRef] - Al-Hadhrami, L.M.; Shaahid, S.M.; Tunde, L.O.; Al-Sarkhi, A. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes. Sci. World J.
**2014**, 2014, 1–11. [Google Scholar] [CrossRef] - Hasson, D.; Mann, U.; Nir, A. Annular flow of two immiscible liquids. Can. J. Chem. Eng.
**1970**, 48, 514–520. [Google Scholar] [CrossRef] - Vielma, M.; Atmaca, S.; Sarica, C.; Zhang, H.Q.; Al-Sarkhi, A.S. Characterization of oil water flows in inclined pipes. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21–24 September 2008; pp. 1273–1286. [Google Scholar] [CrossRef]

**Figure 1.**Top view of the complete experimental rig setup (

**A**), injection point close-up (

**B**). (1), (2) and (3) Phases Y-junction injection system. L is the characteristic length and D the characteristic diameter of the pipe respectively for the dimensionless representative scale.

**Figure 3.**Pressure plot, values along the central marker. Experimental data obtained from [33].

**Figure 6.**Iso-surface of the water-oil interface with the respectively velocity contours with different viewing planes: Isometric, YZ and XZ planes.

**Figure 7.**Interface velocity scatterplots. The iso-surface that represents the interface is projected over a 2d scatterplot.

Case Studies | 1 | 2 | 3 | ||||||
---|---|---|---|---|---|---|---|---|---|

Nozzle | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |

Water | X | O | O | O | X | O | O | O | X |

Glycerol | O | X | X | X | O | X | X | X | O |

Case Studies | 4 | 5 | 6 | ||||||

Nozzle | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |

Water | O | X | X | X | O | X | X | X | O |

Glycerol | X | O | O | O | X | O | O | O | X |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

De la Cruz-Ávila, M.; Carvajal-Mariscal, I.; Sigalotti, L.D.G.; Klapp, J. Numerical Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline. *Water* **2022**, *14*, 3451.
https://doi.org/10.3390/w14213451

**AMA Style**

De la Cruz-Ávila M, Carvajal-Mariscal I, Sigalotti LDG, Klapp J. Numerical Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline. *Water*. 2022; 14(21):3451.
https://doi.org/10.3390/w14213451

**Chicago/Turabian Style**

De la Cruz-Ávila, M., I. Carvajal-Mariscal, Leonardo Di G. Sigalotti, and Jaime Klapp. 2022. "Numerical Study of Water-Oil Two-Phase Flow Evolution in a Y-Junction Horizontal Pipeline" *Water* 14, no. 21: 3451.
https://doi.org/10.3390/w14213451