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Abstract: A new approach in modeling of mixing phenomena in double-Tee pipe junctions based on
machine learning is presented in this paper. Machine learning represents a paradigm shift that can be
efficiently used to calculate needed mixing parameters. Usually, these parameters are obtained either
by experiment or by computational fluid dynamics (CFD) numerical modeling. A machine learning
approach is used together with a CFD model. The CFD model was calibrated with experimental
data from a previous study and it served as a generator of input data for the machine learning
metamodels—Artificial Neural Network (ANN) and Support Vector Regression (SVR). Metamodel
input variables are defined as inlet pipe flow ratio, outlet pipe flow ratio, and the distance between
the pipe junctions, with the output parameter being the branch pipe outlet to main inlet pipe mixing
ratio. A comparison of ANN and SVR models showed that ANN outperforms SVR in accuracy for
a given problem. Consequently, ANN proved to be a viable way to model mixing phenomena in
double-Tee junctions also because its mixing prediction time is extremely efficient (compared to CFD
time). Because of its high computational efficiency, the machine learning metamodel can be directly
incorporated into pipe network numerical models in future studies.

Keywords: mixing phenomena; double-Tee junctions; machine learning; artificial neural networks;
support vector regression; CFD model

1. Introduction

The mixing of fluids in water distribution networks is a complex phenomenon that has been
extensively subjected to research as it is relevant to several specific areas of application such as
water distribution quality and safety [1–3], pollution source detection systems (both large [4,5] and
small networks [6]), and optimal pollution sensor placement in a water distribution network [7–10].
The elements that form water distribution networks are pipes and junctions. When modeling mixing
in a complex system, a correct mixing model must be applied to accurately describe the contaminant
transport through the network due to the fact that a wrong solution could present a hazard to a great
number of network users.

Usually, mixing in a pipe network is modeled as either complete mixing or bulk mixing.
Complete mixing can be described as an even split of contamination at a network junction.
Complete mixing models such as the one developed in the hydraulic analysis software EPANET
are implemented by calculating the flow-weighted concentrations at the inlet pipes of a junction and
then assuming an even split in the outlet pipes. The complete mixing model can be assumed correct
only if there is a single outlet at a junction and if the distance between two junctions is great enough.
For certain distances [11,12], it does not describe the physical process of mixing correctly.

Water 2020, 12, 238; doi:10.3390/w12010238 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-0377-686X
https://orcid.org/0000-0001-7469-3135
https://orcid.org/0000-0003-2150-3398
https://orcid.org/0000-0002-5839-3156
http://dx.doi.org/10.3390/w12010238
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/1/238?type=check_update&version=2


Water 2020, 12, 238 2 of 16

Bulk mixing is an idealized mixing in which the flow between two inlet pipes is not interacting
and the diffusive behavior between the inlet pipe streams is ignored (the streams are only touching
at an interface). To model the bulk mixing, the flow momentum in the inlet pipes is calculated,
and it determines how the concentration splits between the outlets. The inlet pipe with the higher
momentum will dominate in concentration transfer into the outlet pipe, which follows the same
direction as the inlet pipe. The inlet pipe with lower flow momentum will only transfer the
concentration into its neighboring outlet pipe. This kind of mixing behavior is usually specific
to cross junctions. The bulk mixing model is implemented in the software EPANET-BAM [13] (which
can be considered as an extension of EPANET). If the expected mixing behavior is neither complete
nor bulk, an experimentally-calibrated mixing model parameter can be used, by which type of mixing
is defined.

In research by McKenna et al. [14], it is shown that, for a cross junction (which is a special case of
a double-Tee junction in which the distance between converging and diverging pipes is equal to zero),
a strong deviation from complete mixing occurs when the Reynolds number at each inlet and outlet
pipe is equal. On the other hand, stronger turbulence can also create a considerable unpredictability
of mixing in cross junctions [15]. The mixing that occurs at two sequential Tee junctions is especially
complex due to increased chaotic eddying of flow, which in turn increases the diffusion between
the streams. It is proved in several studies [12,16,17] that the length between double-Tee junctions is
important since it determines the behavior of mixing of fluids or rather the transport of contaminant
into each diverging pipe. In addition, variation of flows at both inlet and outlet pipes causes the mixing
behavior to vary [11,12]. Another property of a pipe system that can cause an incomplete mixing
behavior are uneven pipe diameters, where a large difference between pipe diameters can produce a
more complete mixing [18]. The orientation of pipes for a double-Tee junction also affects the mixing
behavior, and it is shown that mixing for a case when the pipes are at a opposite side compared to the
case where they are at the same side, behaves differently [11,12] (assuming planar configuration). It is
also shown that transitional and laminar flows in pipes exhibit a specific mixing behavior [19].

Instead of an experimental approach to studying mixing behavior in double-Tee junctions,
computational fluid dynamics (CFD) can also be used. A species transport model coupled with
RANS turbulence models yields good results [12,16] that can be used to further enhance simpler 1D
mixing models (such as EPANET-BAM). Additionally, a high fidelity LES turbulence model can also be
used to study mixing with more detail [20]. The problem with CFD simulations and the contaminant
transport model is that they need to be calibrated as they are dependant on the turbulent Schmidt
number, the value of which is very much case-specific [21,22] and has been differently reported in
several studies regarding CFD analysis of mixing in double-Tee junctions [12,23,24]. Furthermore,
CFD simulations are computationally expensive and producing results for a range of combinations of
mixing scenarios (varying inlet and outlet flow, distance between junctions, and even pipe diameters)
is quite impractical. Alternatively, mixing behavior can be predicted by use of data analysis (i.e.,
interpolation on a fixed previously produced dataset), as was done in a previous study [25] where
Kriging and Delaunay triangulation were combined to describe mixing for different Reynolds numbers.

Recently, machine learning (ML) algorithms used in hydrology and hydraulics include Artificial
Neural Networks (ANN) and variations [26,27], Random Forest [28], and Support Vector Machine [29].
ML has been previously successfully implemented in pipe flow systems. A selection of ML algorithms
such as Random Forest, Bagging Algorithm, and Regression Tree were used to predict various
characteristics of a wastewater pipe system and it was found that Regression Trees are most
successful [30]. Several ML algorithms were also used to predict pressure gradients, liquid holdup, and
flow pattern identification of multiphase flow on a pipe segment (where data were generated by CFD)
and, for some of the characteristics, the Gradient Boosting algorithm and Support Vector Machine
yielded best results [31]. Deep learning (i.e., ANN) was successfully applied to produce the best valve
scheduling scenario in the case of pipe network contamination instead of searching for a contamination
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source [32]. Similarly, Support Vector Regression (SVR) was used to detect anomalies in a pipe network
system [33] and a modified ANN approach was used for pipe network management [34].

A ML approach can be also used to evaluate the mixing behavior based on previously obtained
data (either by experiment or by CFD). In this study, two ML algorithms—SVR and ANN—were
tested in predicting mixing behavior for a combination of different inlet and outlet pipe flow ratios
and different distances between double-Tee junctions, on one pipe configuration. Training data
were generated by 3D CFD that was calibrated on an experiment presented in a previous study [12].
A supercomputer was used for CFD modeling due to its high computational demand and need to
generate as many data as possible for better ML training.

2. Materials and Methods

2.1. Problem Description

Mixing prediction was performed for a previously reported experiment [12], in which the setup
includes varying distances between double-Tee junctions and varying inflows in pipes.

Figure 1 shows the pipe configuration used. Branch pipes are on the opposite sides and the arrows
represent the flow direction. Tap water (T) (which was used as a tracer) enters the main inlet pipe 1
while distilled water (D) enters the branch inlet pipe 2 causing the mixture (M) of tap and distilled
water to exit both the main outlet pipe 3 and the branch outlet pipe 4. The electrical conductivity of tap
water in the experiment was measured to be around 200 µS/cm2 while the distilled water conductivity
was around 2 µS/cm2 at pipe inlets 1 and 2, respectively. This difference of electrical conductivity of
the fluids was used to determine the mixing process in the double-Tee junctions since they differed
by a factor of 100. The electrical conductivity of the mixture that leaves pipe outlets 3 and 4 was
measured and was always constrained between the inlet tap water and inlet distilled water electrical
conductivity. The rate of mixing or the electrical conductivity of the mixture at outlets depends on the
flow conditions in the inlet and outlet pipes.

1 (T)

2 (D)

3 (M)

4 (M)

Figure 1. Scheme of the experimental configuration.
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The measure of mixing taken from experimental data and used for further investigation of mixing
was the branch outlet pipe 4 to main inlet pipe 1 (see Figure 1) conductivity ratio, which is defined as

Rc =
c4

c1
(1)

where c4 represents the conductivity at outlet pipe 4, while c1 is the conductivity at inlet pipe 1.
This ratio was chosen due to its usage in previous studies [13,35] as it can be used in mixing

prediction for simpler 1D models (EPANET-BAM). The inlet pipe flow ratio was also varied in the
experiment and it is defined as

Rqin =
Q1

Q2
(2)

where Q1 defines the flow at inlet pipe 1 and Q2 the flow at inlet pipe 2. The values of Q1 and Q2

were controlled with valves in the experiment until a steady state behavior was achieved and then the
measurement of the electrical conductivity at each outlet pipe was made.

The inflow pipe ratios Rqin used in the experiment were 0.333, 0.5, 1, 2, and 3, while the flow at
both outlet pipes was the same. One of the purposes of this study was to examine the behavior of
mixing when Rqin is not equal to 1 while the flow at both outlet pipes is also being varied since there is
a lack of previous research regarding these combinations (which in a realistic case are most probable).
Another important characteristic of the experiment is the distance between the double-Tee junction
that was varied as 5.6D, 10D, and 15D (where D is the diameter of the pipes). All of the relevant
specifications of the experiment are summarized in Table 1.

Table 1. Experimental data.

Parameter Value Unit

Internal pipe diameter (D) 18 mm
Inlet pipes length 20D mm

Outlet pipes length 40D mm
Tee distances 5.6D, 10D, 15D mm

Flow in mixing zone 0.08−0.43 l/s
Reynolds number range 5658−30416 -

Inlet flow ratios 0.333, 0.5, 1, 2, 3 -
Kinematic viscosity of water 1 × 10−6 m2/s

2.2. CFD Simulations

2.2.1. CFD Model

A CFD approach was used as both a comparison of efficiency with the ML approach and a dataset
generator for ML algorithms. The open-source CFD toolbox OpenFOAM [36] was used to model the
mixing phenomena as it was previously proven to work well for the given problem. The isothermal
3D steady Reynolds-Averaged Navier–Stokes (RANS) equations with the passive scalar transport
model and the k-Epsilon (k-ε) turbulence model were solved, where k represents the turbulence kinetic
energy and ε is the turbulence energy dissipation. The passive scalar transport model is defined as:

∇× (vc) = ∇× (Dt∇c) (3)

Dt = Dmol +
νt

Sct
(4)

νt = Cµ
k2

ε
(5)

In Equation (3), parameter c represents a dimensionless scalar value, set as c = 0 for distilled water
and c = 1 for tap water as it represents the tracer in pipes; Dt is the turbulent diffusivity defined by
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Equation (4); and v represents the advection velocity vector. Equation (3) can be physically interpreted
as transport of a scalar quantity c by the fluid flow, which is resolved by the coupled RANS/(k-ε)
model. The additional passive scalar transport model in Equation (3) was coupled with the steady-state
turbulent OpenFOAM solver simpleFoam making it a new fluid flow solver referred to as tracerFoam.

Equation (4) is essential for modeling mixing phenomena as the turbulent Schmidt number Sct

needs to be calibrated. According to the results of the previous study [12], Sct was defined as Sct = 0.5.
As for other parameters, Dmol is the molecular diffusivity of water (set as Dmol = 1.7 × 10−9 m2/s [37]),
νt represents the kinematic eddy viscosity, and the constant Cµ was set to Cµ = 0.09.

A bounded second-order upwind-biased scheme was used for the divergence terms of the model,
while for the gradient terms the central difference scheme was used. The fluid used for all simulation
runs was water with kinematic viscosity of ν = 1 × 10−6 m2/s.

A uniform value for velocity v was defined at pipe inlets and outlets and a no-slip boundary
condition was defined at the pipe walls. The values of v were set at the pipe inlets and pipe outlets
to form an exact ratio of both Rqin and Rqout for all cases (0.333, 0.5, 1, and 2). Pressure p = 0 was
defined at outlet pipe 4 and zero pressure gradient in the normal direction was defined on the inlets,
outlet pipe 3, and pipe walls. The concentration c was fixed at the inlets (c = 1 for inlet pipe 1 and
c = 0 for inlet pipe 2), while, at the outlets and pipe walls, the derivative of concentration in the
normal direction was set to zero. Additionally, the value of c was monitored at outlet pipe 3, and,
to achieve a steady state regime, it had a convergence criterion of 10−5. For the (k-ε) turbulence model,
the values of k and ε at inlets and outlets were defined the same way as for c except at the pipe walls,
where turbulence wall functions were used. Boundary conditions used in the numerical model are
summarized in Table 2.

Table 2. Boundary conditions for the passive scalar model.

Variable Inlets Outlets Pipe Walls

v v v v = 0
p ∂p/∂n = 0 p and ∂p/∂n = 0 ∂p/∂n = 0
c c ∂c/∂n = 0 ∂c/∂n = 0
k k ∂k/∂n = 0 fwall
ε ε ∂ε/∂n = 0 fwall

2.2.2. Mesh Independence

Firstly, to use it as a dataset generator, the CFD model was validated with the previously
obtained experimental data. A mesh independence study was done to find the optimal mesh sizes
for data generation. Each distance between the double-Tee junctions yielded a differently sized
mesh, with greater distances requiring more cells. The CFD approach mesh independence was
validated with Rqin equal to 1 and with equal flow at outlet pipes (Rqout equal to 1) for all of the
above-mentioned distances (Table 1). The grid convergence residual criterion was set to 10−5 for
Equation (3). Meshes used in the mesh independence study can be seen in Table 3 where the average
cell size ranged from 1.2 to 0.5 mm, while the summary of the mesh independence study is presented
in Table 4 where Rc is the branch outlet pipe to main inlet pipe conductivity ratio. For ML model data
generation, the fine mesh was chosen.

Table 3. Computational mesh sizes (number of cells in thousands) for different distances.

Distance Coarse Mid Fine Finest

5.6D 196 861 1819 4900
10D 401 1300 2950 5000
15D 538 1960 3000 5200
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Table 4. Mesh independence study results (value of Rc) for different distances.

Distance Coarse Mid Fine Finest Experiment

5.6D 0.602 0.607 0.613 0.613 0.610
10D 0.563 0.560 0.552 0.560 0.563
15D 0.541 0.541 0.530 0.530 0.539

2.2.3. CFD Data Generation

After the mesh independence study was completed and the numerical model was validated,
CFD was used to generate data for ML. As it was defined in the experiment, the value of the inlet pipe
flow ratio in Equation (2) was varied with the outlet pipe flow ratio, which is defined in Equation (6),
where Q3 is the main pipe 3 outlet flow and Q4 is the branch pipe 4 outlet flow.

Rqout =
Q3

Q4
(6)

For an array of Rqin and Rqout , the value of Rc was obtained (RcCFD ). The ratios were all possible
combinations of 0.333, 0.5, 1, 2, and 3 between the inlet pipes and the outlet pipes (e.g., Rqin set as 2
and Rqout as 0.333, Rqin = 1 and Rqout = 2, or Rqin = 0.333 and Rqout = 0.5).

This was conducted for all distances (5.6D, 10D, and 15D), comprising a total of 75 simulations
on the fine mesh (25 simulations per distance).

2.3. ML Model

2.3.1. Artificial Neural Networks

Both an Artificial Neural Network (ANN) and Support Vector Regression (SVR) were used to
train a model which predicts the behavior of mixing in a double-Tee junction case. For both methods,
the input and output data were split as 70% for model training and 30% for model accuracy testing.

Generally, ANNs are a type of ML algorithms that are used to model complex phenomena, which
are not as easy to model using conventional data analysis methods. The type of ANNs used in this
study are Feedforward Multilayer Perceptron Neural Networks. This type of ANN is constructed using
an input layer, which is usually data that cause the emergence of complex phenomena modeled, one or
more hidden layers, and one output layer, which is usually the outcome of the complex phenomena.
Layers consist of artificial neurons and a link exists between every layer of the ANN. Training an ANN
is the process of fitting the weights of the artificial neuron links so that for each input datum a path of
links is made to a certain output. Further information on ANNs can be found in the literature [38].

In this study, three hidden layers were added between the input and output layers and between
every layer a dense connection was defined. The input layer consisted of three different data, the inlet
pipe flow ratio Rqin , the outlet pipe flow ratio Rqout , and distance between the double-Tee junctions
(5.6D, 10D, and 15D). The first hidden layer consisted of 50 neurons, both the second and third hidden
layer consisted of 25 neurons, and all hidden layers used the rectifier activation function. The output
layer was the value of Equation (1) or RcANN . The sigmoid activation function was used at the output
layer. The layer configuration is summarized in Table 5.

The ANN was trained using the ADAM optimizer [39] for 500 epochs with the binary
cross-entropy loss function for error modeling. Initial weights of each layer link was randomized.
The ANN was implemented in the Python Neural Network library Keras [40].
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Table 5. ANN model definition with layers, activation function and data.

Layer Neurons Activation Data

Input Layer 3 - Rqin , Rqout , Distance
Hidden Layer 1 50 Rectifier -
Hidden Layer 2 25 Rectifier -
Hidden Layer 3 25 Rectifier -
Output Layer 1 Sigmoid RcANN

2.3.2. Support Vector Regression

SVR can be considered as a special case of Support Vector Machine (SVM) models. SVMs can
be used for both classification and regression problems and SVR would obviously belong to a family
of algorithms used to create regression models. The SVR model is given training data in the form
of inputs and outputs and it learns the relationship between the data. The inputs are n-dimensional
vectors and the outputs are continuous values (unlike in classification problems). The input–output
dependency or mapping is approximated using kernel functions and weights. Similar to in ANNs
where the link weights are being fitted, the weights in SVR models are also fitted. In the process of
learning, a hyperplane is created between the n-dimensional data along with error planes. The main
goal is to find the data (or the support vectors) that are within the error margin. A further description
of SVR can be found in the literature [41].

The data input and output values were the same as the ones for the ANN (defined in Section 2.3.1).
A fifth-degree radial basis function (RBF) kernel was used for the model, a tolerance of 0.001 (which is
the model fitting stopping criterion), an ε of 0.0001 (which specifies the error margin), and a penalty
parameter equal to 3 (which is enforced for values outside the error margin). SVR was implemented in
the Python ML library Scikit-learn [42].

3. Results and Discussion

3.1. CFD Results and Efficiency

The CFD analysis was done for 75 different scenarios by varying Rqin , Rqout , and three distances
(5.6D, 10D, and 15D). The CFD simulation with Rqin equal to 0.333, 0.5, 2, and 3 and Rqout equal to 1
were compared with the experimental values to make sure that the procedure is valid and that a CFD
model can be used as a data generator for ML (simulation results for Rqin equal to 1 are previously
given in Section 2.2.2). The results are summarized in Table 6.

Table 6. Comparison of CFD and experimental results for different Rqin values.

Distance Rqin RcCFD Rc

5.6D 0.333 0.262 0.239
5.6D 0.5 0.377 0.342
5.6D 2 0.798 0.801
5.6D 3 0.880 0.857
10D 0.333 0.249 0.280
10D 0.5 0.356 0.370
10D 2 0.741 0.719
10D 3 0.825 0.790
15D 0.333 0.246 0.268
15D 0.5 0.343 0.359
15D 2 0.712 0.719
15D 3 0.800 0.809

For the distance of 5.6D between double-Tee junctions, the root-mean-square error (RMSE) is
0.0214 with the minimum relative error being +0.3% and the maximum relative error −10% between
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the experimental and CFD values of Rc. The distance of 10D had the RMSE of 0.0246, the minimum
relative error of experimental and CFD Rc as −3.05%, and the maximum relative error +11%. For the
15D distance, the RMSE is 0.013 with minimum relative error as 0.9% and maximum relative error
8.9%. The error results are summarized in Table 7.

Table 7. CFD model error summary for all distances and Rqin from Table 6.

Distance RMSE Min. Error Max. Error

5.6D 0.0214 +0.3% −10%
10D 0.0246 −3.05% +11%
15D 0.013 0.9% 8.9%

It can be seen that the error of the CFD model for the 15D distance is the lowest one. This can
be attributed to a larger distance between double-Tees since the mixture is already averaged enough
(and closer to complete mixing) across the pipe cross section before it is transported into the diverging
pipes where, arguably, the most complex eddying of flow is happening. At smaller distances,
that averaging of concentration before the diverging pipe is less visible. This can be seen in Figure 2
where Figure 2a is the concentration in the pipe cross section at 1.67D before the branch pipe 4
center-line for 5.6D distance, Figure 2b represents the same but for the 10D distance, and Figure 2c
shows results for 15D. In Figure 2d, the modeled kinetic energy of turbulence is shown and it is
the highest at the entrance of branch pipe 4, which could be the cause of a slightly higher error for
smaller distances. Overall, the errors are acceptable and CFD proved to be a viable tool in modeling
this phenomena.

(a) (b)

(c) (d)
Figure 2. Concentration at pipe cross sections (1.67D before the center-line of branch outlet pipe 4
and all cross sections are perpendicular to fluid flow) and turbulence kinetic energy with Rqin and
Rqout equal to 1 for all cases: (a) cross section concentration for 5.6D; (b) cross section concentration for
10D; (c) cross section concentration for 15D; and (d) turbulence kinetic energy k (m2/s2) for 5.6D (plan
view), where arrows represent the flow direction and a dashed line the position of the cross section of
the 5.6D case.
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Even though the CFD method used provides a good model for mixing phenomena in double-Tee
junctions, there is still a problem of computational efficiency. All simulations (for the fine mesh that
ranged from approximately 1.8 to 3 million cells) were done using the BURA supercomputer resources
at the University of Rijeka. All runs were executed in parallel on 8 Intel E5 nodes with 20 threads per
node resulting in 160 processes in total. The computational run times (until the residual of Equation (3)
fell below 10−5) for each case is summarized in Table 8.

Table 8. Computational run time for each distance on a fine mesh.

Distance Cell Number Time

5.6D 1.86 million 56 min
10D 2.95 million 82 min
15D 3.00 million 83 min

Taking into account that these results were obtained with a supercomputer on 160 Intel E5 cores,
this methodology is very inefficient if employed on an personal computer, especially since a lot of
computation is necessary for a large variety of possible combinations of inlet pipe flows, outlet pipe
flows, and distances between double-Tee junctions.

3.2. ML Results

3.2.1. Models’ Training and Testing

Of the 75 obtained simulation results, 70% were used for model training, and 30% were used for
the purpose of model accuracy testing for both ANN and SVR since this train-to-test ratio provides
that the training dataset should include all possible patterns used for defining the problem and
should extend to the edge of the modeling domain. Both models were tested 10 times with randomly
selected input data and the models with the minimum RMSE value of the test data were adopted and
used further (both ML models RMSE varied for around 0.008 between the minimum and maximum
value). The CFD obtained results were taken to be exact (since they exhibit a good agreement with the
experimental results based on the average RMSE) and ANN and SVR model results were compared
with them to examine their accuracy. For the same data inputs (Rqin , Rqout , and distance), the ANN
model performed better than the SVR model regarding the accuracy of the testing data (predictions of
Rc). The RMSE of ANN predictions was 0.0172 while for SVR it was 0.0361 with the maximum error of
0.0427 for ANN and 0.119 for SVR. The results of training data predictions are summarized in Table 9
while a detailed comparison of predicted data can be seen in Table 10.

Table 9. Accuracy metrics of ANN and SVR models.

Model RMSE Max Error

ANN 0.0172 0.0427
SVR 0.0361 0.119

The values of RcSVR (SVR predicted Rc) and RcANN (ANN predicted Rc) in Table 10, which were
obtained from the 30% of the input dataset, in bold better predict the CFD modeled values RcCFD ,
which serve as correct results of mixing behavior. ANN had a better prediction than SVR for 14 out of
23 input data values but for the other 9 predictions it was also quite close to the CFD modeled values.
Overall, both models exhibit solid accuracy for predicting the input data even though ANN would
obviously be a better choice for further examination.
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Table 10. Comparison of the testing data (30% of the whole generated data) predictions for SVR and
ANN with bold values representing a better prediction.

Rqin Rqout Distance RcCFD RcSV R RcANN

1 0.333 15D 0.519 0.516 0.520
0.5 0.333 15D 0.342 0.323 0.329
3 0.333 5.6D 0.812 0.810 0.833
3 3 15D 0.823 0.775 0.850
1 2 10D 0.565 0.577 0.578
1 0.5 10D 0.535 0.546 0.555
2 0.5 15D 0.702 0.699 0.710
1 3 15D 0.540 0.472 0.527

0.5 3 10D 0.360 0.327 0.333
0.5 0.333 5.6D 0.354 0.335 0.362
2 2 10D 0.769 0.807 0.756

0.5 3 15D 0.341 0.290 0.336
2 0.5 10D 0.718 0.714 0.707
2 1 10D 0.741 0.736 0.718

0.5 2 10D 0.360 0.334 0.357
3 1 15D 0.800 0.800 0.807
1 0.333 10D 0.529 0.545 0.546
3 3 10D 0.868 0.749 0.911

0.333 1 15D 0.246 0.267 0.257
0 0.5 15D 0.344 0.326 0.333
0 0.5 5.6D 0.360 0.343 0.361
1 1 15D 0.530 0.545 0.556
2 2 15D 0.730 0.751 0.729

3.2.2. Rc Prediction for Other Double-Tee Distances

Another useful test was done on the ANN and SVR models, which is the prediction of Rc for
distances that were not in the input training data. The chosen distances were 7.5D and 12.5D since
they are in between the training data values (5.6D, 10D, and 15D). The results of the 7.5D and 12.5D
tests can be seen in Table 11 and again the results in bold are the ones that agree better with the
CFD prediction.

Table 11. SVR and ANN model comparison for 7.5D and 12.5D (better prediction values are made bold).

Rqin Rqout Distance RcCFD RcSV R RcANN

2 1 7.5D 0.770 0.624 0.742
0.5 3 7.5D 0.362 0.456 0.371
2 1 12.5D 0.728 0.562 0.712

0.333 1 12.5D 0.245 0.447 0.245

After testing the prediction on different double-Tee junction distances (which were not included
in the training data), it is obvious that ANN greatly outperforms SVR on this task. Henceforth, further
double-Tee mixing ML analysis (of a whole range of Rqin and Rqout values) was only done using ANN.

3.2.3. Rc Prediction for a Range of Rqin and Rqout with ANN

A prediction of a range of possible combinations of inlet pipe flow and outflow ratios was done,
albeit on a range that is still inside the minimum and maximum values of Rqin , Rqout (from 0.333 to
3), and the distance of the training model, thus no extrapolation of data was done. The purpose
of this test was to obtain the whole Rqin –Rqout surface for a given distance between the double-Tee
junction. Before extracting the surface data from the ANN model, which show mixing behavior for the
whole array of Rqin and Rqout , an additional check of validity of the ANN model was performed for a
Rqin = 1.3 and Rqout = 1 since the testing data were done only for Rqin and Rqout of 0.333, 0.5, 1, 2, and
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3. The CFD model result RcCFD was 0.706 while the RcANN was 0.681, which corresponds to an error of
+3.54% when RcCFD is considered to be the exact value.

Figures 3–5 show the predicted values of Rc by ANN for the distances 5.6D, 10D, and 15D,
respectively. Values of RcANN are represented by color and iso-lines. All three figures show continuous
values of RcANN instead of the discreet ones obtained by CFD and experiments. It can be noticed by
comparing the figures that the gradient of RcANN is smoother (the difference between the minimum
and the maximum value is smaller) when the double-Tee distance is increased, which is logical since a
much more complete mixing behavior is achieved with an increased distance. Another thing that can
be noticed (for all distances) in the figures is that, when both Rqin and Rqout are increased, the value of
RcANN tends towards 1, which can be interpreted as, when simultaneously both the flow in the main
inlet pipe and the main outlet pipe are increasing, the concentration in the main outlet pipe is also
increasing, and therefore deviating more from complete mixing. A similar thing happens when both
(Rqin and Rqout ) are decreasing, making the concentration RcANN lower (it tends towards 0).

Additionally, in Figure 6, a 3D RcANN plot that contains the surfaces for 5.6D, 10D, and 15D
distances is presented to better depict the gradient or the steepness of the surfaces.
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Figure 3. Predicted RcANN surface values for Rqin , Rqout , and 5.6D distance.
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Figure 4. Predicted RcANN surface values for Rqin , Rqout , and 10D distance.
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Figure 5. Predicted RcANN surface values for Rqin , Rqout , and 15D distance.
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Figure 6. Predicted RcANN surfaces for 5.6D, 10D, and 15D.

3.2.4. On ANN Efficiency

It is hard to quantify the efficiency of the ANN model since it is dependant on previously
generated data (either by CFD or experiment) but if a task were to generate, with a trained ANN,
the whole range of new values of Rc from a range of input values, then it could be argued that ANN is
extremely efficient since obtaining RcANN for 23 input data lasted 0.18 s.

4. Summary and Conclusions

In this paper, a new methodology for double-Tee junctions mixing modeling is presented based
on an experiment from the previous literature. A CFD model was calibrated with the experimental
data to serve both as a computational efficiency benchmark and a data-generator for a ML approach
for the presented double-Tee junction mixing phenomena assessment problem.

In total, 75 simulations were done by the calibrated CFD RANS k-ε turbulence model and the data
were used to train two different ML models. The input variables were defined as the inlet pipe flow
ratio, the outlet pipe flow ratio, and distance between the double-Tee junction, while the output was
the outlet branch pipe to main inlet pipe conductivity ratio, which is a relevant variable that describes
the mixing behavior in a double-Tee junction.

The two tested ML algorithms were Support Vector Regression and Artificial Neural Network
(specifically Feedforward Multilayer Perceptron), and, of the two, ANN outperformed SVR in accuracy.
Empirical results obtained with the ANN model used show good approximation in predicting the
mixing behavior for different distances between double-Tee junctions and inlet/outlet pipe flow ratios.

Besides the accuracy of ANN, it was determined that the computational efficiency of the ANN
model is much greater than that of the CFD model, which makes it a great tool for modeling this
kind of phenomena. Since many previous studies produced experimental data for a great number
of different combinations (which include different Reynolds numbers ranges in pipes, varied pipe
diameters, distances between double-Tees, pipe configuration, etc.), a further study could be done to
create an ANN that takes into account all of these variables and produces all the relevant parameters
to accurately model mixing. With its computational efficiency, a fast model such as ANN could be
directly incorporated into complex water network supply pipe network models (such as EPANET and
similar), which would greatly improve their accuracy and in turn make them a more powerful tool for
predicting water network pollution dispersion and similar hazardous phenomena.
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6. Kranjčević, L.; Čavrak, M.; Šestan, M. Contamination source detection in water distribution networks.
Eng. Rev. 2010, 30, 11–25.

7. Ciaponi, C.; Creaco, E.; Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Musmarra, D.; Santonastaso, G.F.
Reducing Impacts of Contamination in Water Distribution Networks: A Combined Strategy Based on
Network Partitioning and Installation of Water Quality Sensors. Water 2019, 11, 1315. [CrossRef]

8. Krause, A.; Leskovec, J.; Guestrin, C.; VanBriesen, J.; Faloutsos, C. Efficient sensor placement optimization
for securing large water distribution networks. J. Water Resour. Plan. Manag. 2008, 134, 516–526. [CrossRef]

9. Berry, J.; Hart, W.E.; Phillips, C.A.; Uber, J.G.; Watson, J.P. Sensor placement in municipal water networks
with temporal integer programming models. J. Water Resour. Plan. Manag. 2006, 132, 218–224. [CrossRef]

10. Hart, W.E.; Murray, R. Review of sensor placement strategies for contamination warning systems in drinking
water distribution systems. J. Water Resour. Plan. Manag. 2010, 136, 611–619.

11. Song, I.; Romero-Gomez, P.; Andrade, M.A.; Mondaca, M.; Choi, C.Y. Mixing at junctions in water
distribution systems: An experimental study. Urban Water J. 2018, 15, 32–38. [CrossRef]
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