Remote Monitoring of NH3-N Content in Small-Sized Inland Waterbody Based on Low and Medium Resolution Multi-Source Remote Sensing Image Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. FSDAF
2.2. ESPCN
2.3. Improved Spatiotemporal Fusion Model SR-FSDAF
2.3.1. Unsupervised Classification of Landsat Images at Time
2.3.2. Rough Estimation of Pixel Temporal Change
2.3.3. Residual Computing of Pixel Temporal Changes
2.3.4. Image Reconstruction and Spatial Change Prediction Based on ESPCN Super-Resolution
2.3.5. Residual Distribution Calculation
2.3.6. Enhancement and Fusion Based on Neighborhood Information
2.4. Inversion Models
2.5. Evaluation Index
2.6. Study Area
2.7. Landsat-8 OLI
2.8. MODIS
3. Experiments and Results
3.1. Evaluations of Spatio-Temporal Fusion Model
3.2. Inversion Based on Fused Images
3.2.1. Correlation Analysis of NH3-N
3.2.2. Accuracy Comparison of Inversion Models
3.2.3. Spatio-Temporal Distribution of the NH3-N
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K. Evaluating the Effect of Diffuse and Point Source Nutrient Transfers on Water Quality in the Kombolcha River Basin, an Industrializing Ethiopian Catchment. Land Degrad. Dev. 2018, 29, 3366–3378. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.Q.; Huang, J.Z.; Li, Y.M.; Lu, W.N.; Wang, G.X. Preliminary Exploring of Hyperspectral Remote Sensing Experiment for Nitrogen and Phosphorus in Water. Spectrosc. Spectr. Anal. 2008, 28, 839–842. [Google Scholar]
- Wang, X.; Fu, L.; He, C. Applying Support Vector Regression to Water Quality Modelling by Remote Sensing Data. Int. J. Remote Sens. 2011, 32, 8615–8627. [Google Scholar] [CrossRef]
- Liu, H.; Xuejian, L.; Fangjie, M.; Meng, Z.; Di’en, Z.; Shaobai, H.; Zihao, H.; Huaqiang, D. Spatiotemporal Evolution of Fractional Vegetation Cover and Its Response to Climate Change Based on Modis Data in the Subtropical Region of China. Remote Sens. 2021, 13, 913. [Google Scholar] [CrossRef]
- Kun, S.; Zhang, Y.; Zhu, G.; Qin, B.; Pan, D. Deteriorating Water Clarity in Shallow Waters: Evidence from Long Term Modis and in-Situ Observations. Int. J. Appl. Earth Obs. Geoinf. 2017, 68, 287–297. [Google Scholar]
- Zhang, Y.; Shi, K.; Zhou, Y.; Liu, X.; Qin, B. Monitoring the River Plume Induced by Heavy Rainfall Events in Large, Shallow, Lake Taihu Using Modis 250m Imagery. Remote Sens. Environ. 2016, 173, 109–121. [Google Scholar] [CrossRef]
- Gebru, H.G.; Melesse, A.M.; Gebremariam, A.G. Double-Stage Linear Spectral Unmixing Analysis for Improving Accuracy of Sediment Concentration Estimation from Modis Data: The Case of Tekeze River, Ethiopia. Model. Earth Syst. Environ. 2020, 6, 407–416. [Google Scholar] [CrossRef]
- Heng, L.; Wang, Y.; Jin, Q.; Shi, L.; Li, Y.; Wang, Q. Developing a Semi-Analytical Algorithm to Estimate Particulate Organic Carbon (Poc) Levels in Inland Eutrophic Turbid Water Based on Meris Images: A Case Study of Lake Taihu. Int. J. Appl. Earth Obs. Geoinf. 2016, 62, 69–77. [Google Scholar]
- Arias-Rodriguez, L.F.; Zheng, D.; Sepúlveda, R.; Martinez-Martinez, S.I.; Disse, M. Monitoring Water Quality of Valle De Bravo Reservoir, Mexico, Using Entire Lifespan of Meris Data and Machine Learning Approaches. Remote Sens. 2020, 12, 1586. [Google Scholar] [CrossRef]
- Md, M.; Jannatul, F.; KwangGuk, A. Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 Tm Data. Remote Sens. 2021, 13, 2256. [Google Scholar]
- Montanher, O.C.; Novo, E.M.L.M.; Barbosa, C.C.F.; Rennó, C.D.; Silva, T.S.F. Empirical Models for Estimating the Suspended Sediment Concentration in Amazonian White Water Rivers Using Landsat 5/Tm. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 67–77. [Google Scholar] [CrossRef]
- Shi, L.; Mao, Z.; Wang, Z. Retrieval of Total Suspended Matter Concentrations from High Resolution Worldview-2 Imagery: A Case Study of Inland Rivers. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 032036. [Google Scholar] [CrossRef]
- Martin, J.; Eugenio, F.; Marcello, J.; Medina, A. Automatic Sun Glint Removal of Multispectral High-Resolution Worldview-2 Imagery for Retrieving Coastal Shallow Water Parameters. Remote Sens. 2016, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zheng, L.; Jiang, L.; Liao, M. Forty-Year Water Body Changes in Poyang Lake and the Ecological Impacts Based on Landsat and Hj-1 a/B Observations. J. Hydrol. 2020, 589. prepublish. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Combining Landsat Tm/Etm+ and Hj-1 a/B Ccd Sensors for Monitoring Coastal Water Quality in Hong Kong. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1898–1902. [Google Scholar] [CrossRef]
- Yang, N.; Li, J.D.; Mo, W.; Luo, W.D.; Wu, D.D.; Gao, W.E.; Sun, C.A. Water Depth Retrieval Models of East Dongting Lake, China, Using Gf-1 Multi-Spectral Remote Sensing Images Sciencedirect. Glob. Ecol. Conserv. 2020, 22, e01004. [Google Scholar]
- Du, Y.; Zhang, X.; Mao, Z.; Chen, J. Performances of Conventional Fusion Methods Evaluated for Inland Water Body Observation Using Gf-1 Image. Acta Oceanol. Sin. 2019, 38, 172–179. [Google Scholar] [CrossRef]
- Hickmat, H.; Elham, M.W.; Abdelazim, N.; Takashi, N. Assessing Water Quality Parameters in Burullus Lake Using Sentinel-2 Satellite Images. Water Resour. 2022, 49, 321–331. [Google Scholar]
- Rahul, T.S.; Wessley, B.J.; John, G.J. Evaluation of Surface Water Quality of Ukkadam Lake in Coimbatore Using Uav and Sentinel-2 Multispectral Data. Int. J. Environ. Sci. Technol. 2022; prepublish. [Google Scholar]
- Ustaoğlu, F.; Tepe, Y. Water Quality and Sediment Contamination Assessment of Pazarsuyu Stream, Turkey Using Multivariate Statistical Methods and Pollution Indicators. Int. Soil Water Conserv. Res. 2019, 7, 47–56. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhäckel, G. Unmixing-Based Multisensor Multiresolution Image Fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of Modis and Landsat Time Series Data to Generate High-Resolution Temporal Synthetic Landsat Data Using a Spatial and Temporal Reflectance Fusion Model. J. Appl. Remote Sens. 2012, 6. [Google Scholar]
- Huang, C.; Qin, Z.; Zhang, Z.; Bian, J.; Jin, H.; Li, A.; Zhang, W.; Lei, G. An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and Modis Surface Reflectance to Generate High Temporal Landsat-Like Data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the Blending of the Landsat and Modis Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; Mcdermid, G.; Masek, J.G.; Feng, G.; White, J.C. A New Data Fusion Model for High Spatial- and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and Modis. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Mase, J.G. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Li, A.; Bo, Y.; Zhu, Y.; Guo, P.; Bi, J.; He, Y. Blending Multi-Resolution Satellite Sea Surface Temperature (Sst) Products Using Bayesian Maximum Entropy Method. Remote Sens. Environ. 2013, 52–63. [Google Scholar] [CrossRef]
- Liao, L.; Song, J.; Wang, J.; Xiao, Z.; Wang, J. Bayesian Method for Building Frequent Landsat-Like Ndvi Datasets by Integrating Modis and Landsat Ndvi. Remote Sens. 2016, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Song, H. Spatiotemporal Reflectance Fusion Via Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Tao, X.; Liang, S.; Wang, D.; He, T.; Huang, C. Improving Satellite Estimates of the Fraction of Absorbed Photosynthetically Active Radiation through Data Integration: Methodology and Validation. IEEE Trans. Geoence Remote Sens. 2017, 56, 2107–2118. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Feng, G.; Liu, D.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. Interdiscip. J. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Li, X.; Ling, F.; Foody, G.M.; Ge, Y.; Zhang, Y.; Du, Y. Generating a Series of Fine Spatial and Temporal Resolution Land Cover Maps by Fusing Coarse Spatial Resolution Remotely Sensed Images and Fine Spatial Resolution Land Cover Maps. Remote Sens. Environ. 2017, 196, 293–311. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, H.; Yuan, Z.; Yun, Y. An Improved Starfm with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions. Sensors 2016, 16, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Deng, C.; Wang, S.; Huang, G.; Zhao, B.J. Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine. IEEE Geosci. Remote Sens. Lett. 2016, 13, 4. [Google Scholar] [CrossRef]
- Jungho, Y.; Seonyoung, P.; Huili, G. Downscaling of Modis One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sens. 2016, 8, 215. [Google Scholar]
- Moosavi, V.; Talebi, A.; Mokhtari, M.H.; Shamsi, S.; Niazi, Y. A Wavelet-Artificial Intelligence Fusion Approach (Waifa) for Blending Landsat and Modis Surface Temperature. Remote Sens. Environ. 2015, 169, 243–254. [Google Scholar] [CrossRef]
- Dubrule, O. Comparing Splines and Kriging. Comput. Geosci. 1984, 10, 327–338. [Google Scholar] [CrossRef]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. Paper Presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (Cvpr), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Le, C.; Li, Y.; Yong, Z.; Sun, D.; Huang, C.; Hong, Z. Remote Estimation of Chlorophyll a in Optically Complex Waters Based on Optical Classification. Remote Sens. Environ. 2011, 115, 725–737. [Google Scholar] [CrossRef]
- Torbick, H.; Wiangwang, H.; Qi, B. Mapping Inland Lake Water Quality across the Lower Peninsula of Michigan Using Landsat Tm Imagery. Int. J. Remote Sens. 2013, 34, 21. [Google Scholar] [CrossRef]
Regression Function | Mathematical Expression (a, b and c Are Undetermined Parameters) |
---|---|
linear model | |
quadratic model | |
exponential model | |
logarithmic model |
Sensor | Band | Wavelength Range (μm) | Spatial Resolution (m) | Acquisition Time |
---|---|---|---|---|
Landsat-8 OLI | Coastal (B1) | 0.433–0.453 | 30 | Path/Row122/37: 2017.04.03, 2017.06.17, 2017.11.08, 2017.12.10; Path/Row122/38: 2017.04.03, 2017.06.17, 2017.11.08, 2017.12.10; Path/Row1233/37: 2017.02.16, 2017.08.27, 2017.09.12, 2017.10.30, 2017.11.22; Path/Row123/38: 2017.02.16, 2017.07.26, 2017.08.27, 2017.09.12, 2017.10.30, 2017.12.17 |
Blue (B2) | 0.450–0.515 | |||
Green (B3) | 0.525–0.600 | |||
Red (B4) | 0.630–0.680 | |||
NIR (B5) | 0.845–0.885 | |||
SWIR1 (B6) | 1.560–1.660 | |||
SWIR2 (B7) | 2.100–2.300 |
Sensor | Band | Wavelength Range (μm) | Spatial Resolution (m) | Acquisition Time |
---|---|---|---|---|
MODIS | Red (B1) | 0.620–0.670 | 250 | 2016.12–2017.12 (acquisition time of Landsat-8 images, The 1st of every month) |
NIR (B2) | 0.841–0.876 | |||
Blue (B3) | 0.459–0.479 | 500 | ||
Green (B4) | 0.545–0.565 | |||
MID-IR (B5) | 1.230–1.250 | |||
SWIR1 (B6) | 1.628–1.652 | |||
SWIR2 (B7) | 2.105–2.155 |
SR—FSDAF | STARFM | SRCNN Embedding | FSDAF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | SSIM | SAM | RMSE | SSIM | SAM | RMSE | SSIM | SAM | RMSE | SSIM | SAM | |
Band2 | 0.0046 | 0.979 | 3.417 | 0.0052 | 0.973 | 4.013 | 0.0048 | 0.974 | 3.655 | 0.0045 | 0.982 | 3.508 |
Band3 | 0.0047 | 0.986 | 0.0053 | 0.971 | 0.0049 | 0.977 | 0.0045 | 0.984 | ||||
Band4 | 0.0065 | 0.981 | 0.0076 | 0.972 | 0.0071 | 0.968 | 0.0068 | 0.977 | ||||
Band5 | 0.157 | 0.971 | 0.0198 | 0.983 | 0.0166 | 0.973 | 0.0182 | 0.962 | ||||
Band6 | 0.0195 | 0.964 | 0.0231 | 0.979 | 0.0185 | 0.961 | 0.0197 | 0.958 | ||||
Band7 | 0.0089 | 0.972 | 0.0174 | 0.948 | 0.0127 | 0.958 | 0.0096 | 0.965 |
SR—FSDAF | STARFM | SRCNN Embedding | FSDAF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | SSIM | SAM | RMSE | SSIM | SAM | RMSE | SSIM | SAM | RMSE | SSIM | SAM | |
Band2 | 0.0131 | 0.921 | 7.439 | 0.0162 | 0.878 | 9.879 | 0.0192 | 0.897 | 7.677 | 0.0127 | 0.912 | 7.965 |
Band3 | 0.0167 | 0.886 | 0.0213 | 0.856 | 0.0197 | 0.889 | 0.0186 | 0.887 | ||||
Band4 | 0.0231 | 0.853 | 0.0289 | 0.837 | 0.0244 | 0.816 | 0.0212 | 0.835 | ||||
Band5 | 0.0256 | 0.831 | 0.0347 | 0.814 | 0.0283 | 0.822 | 0.0257 | 0.824 | ||||
Band6 | 0.0439 | 0.641 | 0.0565 | 0.627 | 0.0437 | 0.638 | 0.0431 | 0.633 | ||||
Band7 | 0.0288 | 0.725 | 0.0417 | 0.677 | 0.0367 | 0.677 | 0.0326 | 0.689 |
Band Combination | r of STARFM | r of SRCNN Embedding | r of FSDAF | r of SR-FSDAF | r of Landsat-8 OLI |
---|---|---|---|---|---|
B + NIR | 0.71 | 0.73 | 0.74 | 0.74 | 0.78 |
G + R | 0.70 | 0.75 | 0.75 | 0.77 | 0.79 |
G + R + NIR | 0.68 | 0.71 | 0.75 | 0.74 | 0.77 |
R + NIR | 0.73 | 0.76 | 0.76 | 0.77 | 0.80 |
B/R | 0.77 | 0.759 | 0.764 | 0.793 | 0.84 |
R/B | 0.752 | 0.701 | 0.71 | 0.78 | 0.80 |
(R − G)/(R + G) | 0.74 | 0.76 | 0.76 | 0.81 | 0.81 |
(R − B)(R + B) | 0.75 | 0.73 | 0.76 | 0.75 | 0.77 |
I | II | III | VI | V | InferiorV | |
---|---|---|---|---|---|---|
dry season | 6.69 | 35.41 | 44.44 | 10.15 | 2.76 | 0.54 |
water-stable period | 5.83 | 45.57 | 46.53 | 9.06 | 4.27 | 4.03 |
wet season | 13.89 | 54.26 | 24.6 | 9.56 | 3.73 | 0.31 |
water-stable period | 2.23 | 49.71 | 39.51 | 4.17 | 4.38 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ke, M.; Ma, Y.; Cui, J. Remote Monitoring of NH3-N Content in Small-Sized Inland Waterbody Based on Low and Medium Resolution Multi-Source Remote Sensing Image Fusion. Water 2022, 14, 3287. https://doi.org/10.3390/w14203287
Li J, Ke M, Ma Y, Cui J. Remote Monitoring of NH3-N Content in Small-Sized Inland Waterbody Based on Low and Medium Resolution Multi-Source Remote Sensing Image Fusion. Water. 2022; 14(20):3287. https://doi.org/10.3390/w14203287
Chicago/Turabian StyleLi, Jian, Meiru Ke, Yurong Ma, and Jian Cui. 2022. "Remote Monitoring of NH3-N Content in Small-Sized Inland Waterbody Based on Low and Medium Resolution Multi-Source Remote Sensing Image Fusion" Water 14, no. 20: 3287. https://doi.org/10.3390/w14203287
APA StyleLi, J., Ke, M., Ma, Y., & Cui, J. (2022). Remote Monitoring of NH3-N Content in Small-Sized Inland Waterbody Based on Low and Medium Resolution Multi-Source Remote Sensing Image Fusion. Water, 14(20), 3287. https://doi.org/10.3390/w14203287