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Abstract: In applying quantitative remote sensing in water quality monitoring for small inland
rivers, the time-frequency of monitoring dramatically impacts the accuracy of time-spatial changes
estimates of the water quality parameters. Due to the limitation of satellite sensor design and the
influence of atmospheric conditions, the number of spatiotemporal dynamic monitoring images of
water quality parameters is insufficient. Meanwhile, MODIS and other high temporal resolution
images’ spatial resolution is too low to effectively extract small inland river boundaries. To solve
the problem, many researchers used Spatio-temporal fusion models in multisource data remote
sensing monitoring of ground features. The wildly used Spatio-temporal fusion models, such as
FSDAF (flexible spatial-temporal data fusion), have poor performance in heterogeneous changes
of ground objects. We proposed a spatiotemporal fusion algorithm SR-FSDAF (Super-resolution
based flexible spatiotemporal data fusion) to solve the problem. Based on the FSDAF, it added
ESPCN to reconstruct the spatial change prediction image, so as to obtain better prediction results
for heterogeneous changes. Both qualitative and quantitative evaluation results showed that our
fusion algorithm obtained better results. We compared the band sensitivity of the images before
and after fusion to find out that the sensitive band combination of NH3-N has not changed, which
proved that the fusion method can be used to improve the time-frequency of NH3-N inversion. After
the fusion, we compared the accuracy of linear regression and random forest inversion models and
selected the random forest model with better accuracy to predict the NH3-N concentration. The
inversion accuracy of NH3-N was as follows: the R2 was 0.75, the MAPE was 23.7% and the RMSE
was 0.15. The overall concentration change trend of NH3-N in the study area was high-water period
< water-stable period < low water period. NH3-N pollution was serious in some reaches.

Keywords: NH3-N; water quality monitoring; spatiotemporal fusion model; Landsat-8; MODIS;
remote sensing

1. Introduction

Water is one of the most important materials on earth. With human industrial produc-
tion, agricultural breeding, and daily activities, a large amount of sewage is discharged
into the surrounding water environment, resulting in environmental pollution and a severe
impact on water supply ecology and human health. Monitoring the water quality in time
and obtaining the temporal-spatial variation characteristics of regional water pollutant
concentration is of great significance for assessing the risk of water pollution and effectively
preventing water pollution. Traditional water quality detection methods are costly, time-
consuming, and laborious. The pollutant concentration obtained at the sampling point
cannot reflect the distribution of pollutants in the whole region. Using remote sensing
images can realize regional synchronous observation, obtain the overall distribution of
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contaminants, and provide timely and reliable prediction results for inland water quality
monitoring, which is not available through traditional water quality detection methods.

Water quality monitoring based on remote sensing technology is an important research
direction of environmental remote sensing, and NH3-N is a valuable reference index for
water pollution prevention and control. The concentration of NH3-N in water is related
to water eutrophication and suspended solids [1]. Gong et al. found that the correlation
coefficient of nitrogen was the highest at 404 nm and 447 nm [2]. Wang et al. found
that NH3-N highly correlated with the red, green, and near-infrared (NIR) bands of the
SPOT 5 satellite [3]. Existing studies have shown that the relationship between NH3-N
concentration and reflection spectrum is the theoretical basis for applying remote sensing
technology in water quality monitoring.

Current satellite data for remote sensing water quality monitoring include MODIS [4–7],
MERIS [8,9], TM/ETM + [10,11], Worldview-2 [12,13], HJ-1 CCD [14,15], GF-1 [16,17], sentinel-
2 [18,19], etc. Most of these studies focus on large water bodies such as lakes or offshore,
and there are few studies on inland rivers, especially on small and medium-sized rivers.
The inland river has higher requirements for the spatial resolution and returns period of the
satellite, which is hard to meet with a single satellite sensor. Therefore, it is significant to study
hyperspectral and high-resolution image fusion algorithms to improve the images’ spatial
and temporal resolution for remote sensing monitoring inland rivers. Many works have used
the existing Spatio-temporal fusion model for high-frequency remote sensing monitoring of
ground feature changes [20].

The Spatio-temporal fusion algorithm is based on ground features’ spectral changes in
the high spatial resolution remote sensing image (MODIS). It fuses these changes into the
remote sensing image with a high spatial resolution (OLI) to simulate the image with higher
temporal resolution and better spatial resolution, which provides reference and image
support for the study of temporal and spatial variations monitoring of surface features. The
existing Spatio-temporal fusion algorithms can be classified into five types according to
different principles: Spatio-temporal fusion algorithms based on spectral unmixing [21–23],
algorithms based on weight distribution [24–26], Bayesian principle algorithms [27,28],
feature learning algorithms [29–31], and hybrid methods [32–34]. The method based on
spectral unmixing uses coarse pixels to estimate the value of fine pixels through spectral
mixing theory. Niu et al. proposed STDFA (Spatial-Temporal Data Fusion Approach)
based on this method [22]. Unmixing-based methods have huge unmixing errors and
lack in-class variation of ground objects. The weight-based algorithms include STARFM
(Spatial and Temporal Adaptive Reflectance Fusion Model) [24], ESTARFM (Enhanced
Spatial and Temporal Adaptive Reflectance Fusion Model) [26], and STAARCH (Spatial and
Temporal Adaptive Algorithm for Mapping Reflectance Changes) [25], etc. Weight-based
methods use image information for weight assignment to estimate high-resolution pixel
values, are invalid for heterogeneous changes, and the weight function based on experience
lacks mobility. The method based on Bayesian estimation theory defines the relationship
between the coarse image and the fusing image based on the Bayesian statistical principle,
but the function establishment process is complex, and its performance in heterogeneous
landscapes is unsatisfactory [35]. For the learning-based method, machine learning is
used to simulate the mapping relationship between high-resolution and low-resolution
images so as to predict the fused image, such as SPSTFM (Sparse representation based
Spatio-temporal Reflectance Fusion Model) proposed by Huang et al. [29]. So far, dictionary
pairing learning [29], extreme learning [36], random forest [37], deep convolution neural
network [30], and artificial neural network [38] have been used for Spatio-temporal data
fusion. Although the fusion results are improved, the learning cost is high, the mobility is
poor, and the spectral principle support is lacking support. The hybrid method integrates
two or more methods in the first four categories, such as FSDAF (Flexible Spatiotemporal
Data Fusion) proposed by Zhu et al., which combines unmixing, weighting function, and
spatial interpolation methods to reduce the input of the image and enhance the prediction
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of heterogeneous changes [32]. However, the performance is still not ideal, and it cannot
meet the requirement of higher precision change monitoring.

To improve the poor performance in heterogeneous region prediction, we propose
an improved Spatio-temporal data fusion model SR-FSDAF (super-resolution flexible
spatiotemporal data fusion). Unlike deep learning techniques, which use high-cost training
to enhance the accuracy of image fusion, it maintains the simplicity of FSDAF and uses
fewer image pairs and less time. SR-FSDAF inherits the hybrid model of FSDAF and
improves the thin-plate spline sampling method based on MODIS spectral information to
extract spatial variation details and achieves better reconstruction results consistent with
resampling purposes. SR-FSDAF can more accurately predict fine-resolution images of
heterogeneous regions. Different from other multi-spectral and high-resolution images,
OLI and MODIS were launched earlier and allowed free access to more historical image
information. Some bands of MODIS are similar to those of OLI and have the band basis
for image fusion. Therefore, SR-FSDAF was tested using MODIS and Landsat-8 OLI
images and compared with other fusion methods such as STARFM. Then MODIS images,
OLI images, and SR-FSDAF were applied to water quality monitoring in Xinyang City
to improve the utilization of monitoring frequency and low-resolution images. The NH3-
N inversion model was established based on the fused image band, and the NH3-N
concentration in the Huaihe River Basin of the Xinyang area was analyzed. For NH3-N
concentration inversion, we compared the accuracy of statistical regression model and
random forest model, and adopted random forest model to further improve the accuracy
of NH3-N concentration prediction.

2. Materials and Methods
2.1. FSDAF

Zhu et al. proposed FSDAF in 2016 [32]. In the method, fine pixels are classified into
different types. Temporal variation values of each type are roughly gained by calculating
the changes of different classes of ground objects reflected in the pure pixels of MODIS.
The thin plate spline sampling (TPS) is carried out on the MODIS image of the prediction
date to obtain the rough spatial variation value of ground objects [39]. TPS interpolates and
resamples the data based on spatial correlation to preserve the local change information of
the image. The two kinds of change values are given different weights by neighborhood
information, which reduces the deviation of prediction results and has more stability and
spatial continuity.

However, FSDAF’s prediction quality still declines much in the case of heterogeneous
mutation. Based on the idea of FSDAF, this paper used efficient ESPCN (Efficient sub-pixel
convolution neural network) [40] to replace TPS for MODIS images, which is the main
information source of spatial mutation prediction, and retain more texture information, so
as to improve the prediction accuracy of spatial heterogeneity.

2.2. ESPCN

ESPCN inherits the idea of the super-resolution algorithm. In the network, the high-
resolution image is down-sampled to the low-resolution image, and the convolutional
neural network is used to learn the mapping relationship between the low-resolution and
high-resolution images so as to realize the super-resolution reconstruction of the image.

Figure 1 shows the framework and parameters of the ESPCN. ESPCN first applies the 3-
layer convolutional neural network directly to low-resolution images to avoid experiencing
an amplification before entering the network. After three convolution operations, the
low-resolution image is mapped into a feature map with c× r× r channels, and r is the
upscaling factor. Finally, the high-resolution image is generated by a sub-pixel convolution
layer. The sub-pixel convolutional layer enhances its memory for a position by periodically
filtering functions, combining feature maps with channel c× r × r into high-resolution
images.

f 1
(

ILR; W1, b1

)
= ∅

(
W1 × ILR + b1

)
(1)
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f l
(

ILR; W1:l , b1:l

)
= ∅

(
Wl × f l−1

(
ILR
)
+ bl−1

)
(2)

PS(T)x,y,z = T
x
r

,
y
r

, c·r·mod(y, r) + c·mod(x, r) (3)

IHR = f l
(

ILR
)
= PS

(
f l−1

(
ILR
)
+ bl

)
(4)
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The basic calculation of the network is shown in Equations (1)–(4). Equation (1) and
Equation (2) follow the principle of convolution theory.

ILR is the low-resolution image of the input network, IHR is the high-resolution image
learned by ESPCN, and fi is the convolution kernel function (i is the convolution layer). Wi
and bi are the weight and bias parameters of the convolution kernel, which are obtained by
iterative learning of the network. ∅ is a nonlinear activation function. Equations (3) and (4)
are function descriptions of the subpixel convolution part. PS is a periodic shuffle operator,
which can reorder tensors of size H ×W × C× r2 to tensors of size rH × rW × C.

Feeding the oversize image block to the ESPCN method will greatly affect the network
effects; therefore, our paper reconstructed the input low-resolution MODIS image twice
with the upsampling factor r = 4. The parameters of the network were set to l = 3, ( f1, n1) =
(5, 64), ( f2, n2) = (3, 32), and f3 = 3, r = 4. For the training samples of network learning, the
image pairs are composed of the original Landsat image and the downsampled image to the
1/4 of the original image pair, and the 1/4 image and the further downsampled 1/4 low-
resolution image pair. To avoid repetitive training of the original image pixels, the stride
for extracting the sub-image blocks from the original image was (17−∑ mod( f , 2))× r,
and the stride for extracting the sub-image blocks from the lower resolution image in the
image pair was (17−∑ mod( f , 2)).

2.3. Improved Spatiotemporal Fusion Model SR-FSDAF

SR-FSDAF combines the super-resolution algorithm and the flexible Spatio-temporal
data fusion model algorithm. The SR-FSDAF has six steps: The computing of MODIS
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pixel purity based on unsupervised classification, coarse estimation of the pixel temporal
change, residual computing of pixel temporal changes, image reconstruction and spatial
change prediction based on ESPCN super-resolution, residual distribution calculation, and
enhancement and fusion based on neighborhood information. For the convenience of the
description, the high spatial resolution Landsat image is defined as fine images, and the
high temporal resolution MODIS image is expressed as coarse images. Landsat and MODIS
images at t1 and the MODIS image at t2 are used to predict Landsat images at t2.

Figure 2 shows the flow of the algorithm. The detailed principle of the algorithm
refers to in FSDAF [32] and ESPCN [40]. The variables and definitions of the model are as
follows:
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m—the pixel number of the corresponding Landsat-8 image in a MODIS pixel, which
is a constant of 16;

(xi, yi)—the coordinates of the ith MODIS pixel;
i—MODIS pixel index;
j—index of Landsat-8 pixels in a MODIS pixel index (j: 1, 2, . . . , m);
M1(xi, yi, b), M2(xi, yi, b)—Values of band b on MODIS pixel (xi, yi) at t1 and t2;
L1
(

xij, yij, b
)
, L2
(

xij, yij, b
)
—Values of the jth Landsat-8 pixel in band b at MODIS pixel

(xi, yi) at t1 and t2;
Pc(xi, yi)—the proportion of class c Landsat-8 pixels in the ith MODIS pixel;
∆M(xi, yi, b) the change of the ith MODIS pixel from t1 to t2 at band b;
∆F(c, b)—changes of category c pixels on the bth band of Landsat-8 images from t1 to

t2, and c is one of the classification results of ground objects.

2.3.1. Unsupervised Classification of Landsat Images at t1 Time

Through image preprocessing, the spatial resolution of the MODIS image is 480 m. The
spatial resolution of the Landsat image is 30 m. Therefore, the coverage area of one MODIS
pixel is the same as that of 16 Landsat pixels. Based on this correspondence, we use the K-
means algorithm to classify the Landsat images at time t1 and set the number of clustering
to four categories: water, farmland, buildings, and woodland. Pc(xi, yi) represents the
proportion of Landsat pixels of classification c in 16 pixels (c = 1, . . . 4). For calculation, see
Formula (5). Nc(xi, yi) is the number of Landsat pixels of classification c in 16 pixels.

Pc(xi, yi) = Nc(xi, yi)/m (5)

The K-means method first calculates the initial mean of the categories uniformly
distributed in the data space and then iterates with the principle of the shortest distance
to aggregate the pixels into the nearest cluster. Recalculate the mean values of classes in
each iteration and reclassify pixels with these mean values until the variance within classes
meets the requirements.
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2.3.2. Rough Estimation of Pixel Temporal Change

The second step is calculating the change of MODIS image reflectivity from t1 to t2.
The calculation formula shows in Equation (6).

∆M(xi, yi, b) = M2(xi, yi, b)−M1(xi, yi, b) (6)

According to the spectral unmixing principle, the spectral value of the MODIS pixel
can be expressed by the weighted calculation results of the spectral reflectance value of
various ground objects in the pixel. Therefore, the temporal variation of the MODIS pixel
can also be calculated by the Formula (7). The ∆F(c, b) in the Formula (7) is variation values
of Landsat class c objects on band b, which can be obtained by least squares inverse solution
the Formula (7).

∆M(xi, yi, b) =
l

∑
c=1

Pc(xi, yi)× ∆F(c, b) (7)

Sort the Pc(xi, yi) values of c-class ground objects in MODIS pixels from large to small.
The larger the Pc(xi, yi)-value is, the higher the proportion of c-type ground objects in
MODIS pixels is, and the purer the pixels are. According to the Pc(xi, yi) values, select n
MODIS pixels from high to low to solve ∆F(c, b).

2.3.3. Residual Computing of Pixel Temporal Changes

Assuming that there is no spectral information mutation in the ground object, the
prediction result of the fine-resolution image at time t2 is LTP

t2
(

xij, yij, b
)
. The calculation of

the prediction result shows in Formula (8):

LTP
t2
(
xij, yij, b

)
= L1

(
xij, yij, b

)
+ ∆F(c, b) (8)

Usually, the spectral information of the ground objects will change between the two
moments, and the resulting deviation defines as R(xi, yi, b). The calculation Formula shows
in Formula (9), where n is 16.

R(xi, yi, b) =
1
n

(
n

∑
j=1

LTP
t2
(
xij, yij, b

)
−

n

∑
j=1

Lt1
(
xij, yij, b

))
(9)

2.3.4. Image Reconstruction and Spatial Change Prediction Based on ESPCN
Super-Resolution

Using the ESPCN network, MODIS images at time t2 are input to obtain higher
resolution images LSR

t2
(
xij, yij, b

)
reconstructed by the super-resolution algorithm. The

residual between the high-resolution image obtained by the ESPCN method and the true
high-resolution image at t2 can express as ESR

(
xij, yij, b

)
:

ESR
(

xij, yij, b
)
= LSR

t2
(
xij, yij, b

)
− Lt2

(
xij, yij, b

)
(10)

The ESPCN method directly applies the convolution layer to the coarse image to avoid
the loss of detailed information. The sub-pixel convolution layer restores the feature map
to the super-resolution image. The input MODIS images obtain a high-resolution image by
three consecutive convolution operations and sub-pixel layer rearrangement. ESPCN learns
the feature mapping relationship between coarse and fine images more comprehensively
and can retain the spatial feature information of the input image.

2.3.5. Residual Distribution Calculation

This step uses the homogeneity index to assign weights to residual R(xi, yi, b) and
residual ESR

(
xij, yij, b

)
to calculate the final residual. The difference between the two



Water 2022, 14, 3287 7 of 21

prediction results calculates as the difference residual ESR−TP
(
xij, yij, b

)
, which shows as

Formula (11):
ESR−TP

(
xij, yij, b

)
= LSR

t2
(
xij, yij, b

)
− LTP

t2
(
xij, yij, b

)
(11)

Use the 4 × 4 moving window to calculate the ratio I
(

xij, yij
)

of the number of pixels
consistent with the ground object category of the central fine-resolution pixel to the total
number of pixels in the window as the homogeneity index. The calculation Formula is (12),
where

(
xij, yij

)
is the central pixel of the moving window. When the pixel categories in the

window are consistent, the value of Ik is 1, otherwise is 0.

I
(
xij, yij

)
= ∑n

k=1 Ik
n

(12)

Calculate the weight Ew
(
xij, yij, b

)
according to the homogeneity index I (Formula (13)).

The change degree of homogeneous pixels is determined based on the prediction of ESPCN
super-resolution, and the change degree of heterogeneous pixels is determined based on
the prediction of ESPCN super-resolution.

Ew
(

xij, yij, b
)
= ESR−TP

(
xij, yij, b

)
× I
(
xij, yij

)
+ R(xi, yi, b)×

[
1− I

(
xij, yij

)]
(13)

Normalize the Ew
(
xij, yij, b

)
to obtain W

(
xij, yij, b

)
(Formula(14)):

W
(
xij, yij, b

)
= Ew

(
xij, yij, b

)
/

n

∑
j=1

Ew
(
xij, yij, b

)
(14)

Calculate the residual distribution of the predicted fine resolution image based on the
normalized weight W (Formula (15)). Then, calculate the change value of fine-resolution
pixel ∆L

(
xij, yij, b

)
from time t1 to time t2, as shown in Formula (16).

EL
(

xij, yij, b
)
= n× R(xi, yi, b)×W

(
xij, yij, b

)
(15)

∆L
(
xij, yij, b

)
= EL

(
xij, yij, b

)
+ ∆F(c, b) (16)

2.3.6. Enhancement and Fusion Based on Neighborhood Information

Use the neighborhood information to improve the prediction stability and reduce the
block effect caused by calculation. For the fine-resolution image pixel

(
xij, yij

)
at time t1,

n fine pixels with the same class and the least spectral difference with the
(
xij, yij

)
in the

neighborhood are selected. The computation formula of spectral difference between the kth
fine-resolution pixel and the similar neighborhood pixel is Sk, as shown in Formula (17).

Sk =
B

∑
b=1

[ ∣∣Lt1(xk, yk, b)− Lt1
(
xij, yij, b

)∣∣
Lt1
(
xij, yij, b

) ]
(17)

The weight contribution of these similar pixels to the center pixel follows the distance
principle (Formula (18)). The size of w in w

2 depends on the size of the neighborhood when
taking 20 similar pixels. The farther the distance, the smaller the weight contribution value.
After normalization, the calculation formula of weight wk is (19):

Dk = 1 +

√(
xk − xij

)2
+
(
yk − yij

)2

w
2

(18)

wk =

1
Dk

∑n
k=1

(
1

Dk

) (19)
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After adding the neighborhood information, the final prediction image result is (20):

L f inal
t2

(
xij, yij, b

)
= Lt1

(
xij, yij, b

)
+

n

∑
k=1

wk × ∆L
(
xij, yij, b

)
(20)

2.4. Inversion Models

In the process of remote sensing quantitative inversion, the accurate selection of char-
acteristic bands is the basis for obtaining high inversion accuracy. We use the concentration
the value of water quality parameter NH3-N to calculate the correlation coefficient between
reflectivity and band combinations and select the band or band combination with high
correlation as the modeling parameter.

The traditional statistical regression model (TSR) has been widely used in the inversion
of water quality parameters [41,42].In this paper, the linear function, quadratic function,
exponential function, and logarithmic function are used to construct the inversion model
(Table 1). The model with the highest inversion accuracy is selected as the model type of
the traditional statistical regression model.

Table 1. The Traditional statistical Regression models.

Regression Function Mathematical Expression (a, b and c Are
Undetermined Parameters)

linear model y = a·x + b
quadratic model y = a·x2 + b·x + c

exponential model y = a· log(x) + b
logarithmic model y = a·ebx

At the same time, this paper selects the random forest model with high learning
efficiency as the machine learning algorithm to train and obtains the machine learning
model for the back study of water quality parameters.

2.5. Evaluation Index

To evaluate the accuracy of the fusion method, this paper uses three algorithms:
STARFM, FSDAF, and SRCNN embedding FSDAF as comparison methods. We analyze
the experimental results from the qualitative evaluation and quantitative evaluation. The
qualitative evaluation method compares the fusion results of different models at time t2
with Landsat images at time t2. Through visual observation, we can determine whether the
local details and the overall spectral difference are too large in the simulation reality. The
quantitative evaluation method uses three evaluation indexes to comprehensively evaluate
the overall structural similarity of the fused image, the degree of reflectivity reduction of
the fusion image, and the spectral fidelity of the fusion image.

The overall structural similarity index is structural similarity SSIM, which is widely
used to evaluate the linear relationship strength of two similar images. The calculation
method shows in Formula (21):

SSIM =

2µxµy+C1
2σx+C2(

µ2
x + µ2

y + C1

)(
σx + σy + C2

) (21)

µx and µx are the average values of the Landsat image and the fused image at time t2,
respectively; σx and σy are the image variances of the two; C1 and C2 are non-0 constants
used to ensure that the results are rational. The more similar the overall structure of the
two images is, the closer the SSIM value is to 1.

The evaluation index of reflectivity reduction degree is the root mean square error
RMSE, which reflects the simulation fusion results of pixel value reduction degree and



Water 2022, 14, 3287 9 of 21

detail information. The formula shows in (22). x(i, j) is the Landsat true image, and y(i, j)
is the fusion image.

RMSE =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(x(i, j)− y(i, j))2 (22)

The evaluation index used for spectral fidelity is the spectral angle SAM (Spectral
angle Mapper), which regards the single-pixel spectrum as a high-dimensional vector and
calculates the vector angle of the spectral vector of the pixels in the same position of the
two images. The smaller the value is, the more similar the spectrum between the pixels is.
The specific angle calculation formula is as follows (23).

SAM(x, y) = arccos

[
yᵀx√

xᵀx
√

yᵀy

]
(23)

The accuracy of the inversion model was evaluated by a fitting coefficient (R2), mean
absolute percentage error (MAPE), and root mean square error (RMSE). The formula of
MAPE shows in (24).

MAPE =
n

∑
t=1

∣∣∣∣ x− y
x

∣∣∣∣× 100
n

(24)

2.6. Study Area

The study area is 113◦45′ E~115◦55′ E, 30◦23′ N~32◦27′ N in the Xinyang section
of Huaihe River Basin. The study area is located on the boundary line between North
and South China (Qinling–Huaihe Line), which belongs to the transition zone between
subtropical and temperate monsoon climates and the transition zone between humid and
semi-humid regions. The main tributaries in the region are shown in Figure 2.

On 5 December 2016 and 1 January 2017, the concentrations of NH3-N in 43 water
samples were collected in the study area. The distribution of the measured sampling points
and the location of the study area are shown in Figure 3.

2.7. Landsat-8 OLI

The spatial resolution of Landsat-8 is 30 m, and the return visit period is 16 days,
which is the fusion data source commonly used in the Spatio-temporal fusion algorithm.
For the test of the fusion model, two sets of MODIS-Landsat image pairs are used in this
paper.

The first group is the Landsat and MODIS image pairs of Xinyang City on 8 November
2017, and 24 November 2017. No heterogeneous mutation occurred during the period.
The second group is the Landsat and MODIS image pairs on 26 November 2004, and 12
December 2004, in northern New South Wales, Australia, during which flood events in the
region caused heterogeneous mutations.

NH3-N inversion of remote sensing data selected less than 10% of the cloud Landsat-8
OLI data, image bands, and other specific information can be seen in the Table 2. The
selected Landsat-8 OLI images were preprocessed, such as atmospheric correction.

2.8. MODIS

MODIS has a spatial resolution of 500 m and a return visit period of 1 day, a commonly
used fusion data source for Spatio-temporal fusion algorithms.

For the fusion model and NH3-N inversion experiments, this paper uses MODIS daily
surface reflectance data on the same date as the corresponding Landsat. The selected
MODIS data has been preprocessed, and the MODIS is reprojected and resampled to 480 m
to facilitate matching and calculation with Landsat image pixels with a spatial resolution of
16 m. The specific information of MODIS is shown in the Table 3.
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Table 2. Spectral bands and acquisition dates of Landsat-8 OLI in the study.

Sensor Band Wavelength Range (µm) Spatial Resolution (m) Acquisition Time

Landsat-8 OLI

Coastal (B1) 0.433–0.453

30

Path/Row122/37: 2017.04.03, 2017.06.17, 2017.11.08, 2017.12.10;
Path/Row122/38: 2017.04.03, 2017.06.17, 2017.11.08, 2017.12.10;
Path/Row1233/37: 2017.02.16, 2017.08.27, 2017.09.12, 2017.10.30,

2017.11.22;
Path/Row123/38: 2017.02.16, 2017.07.26, 2017.08.27, 2017.09.12,

2017.10.30, 2017.12.17

Blue (B2) 0.450–0.515
Green (B3) 0.525–0.600
Red (B4) 0.630–0.680
NIR (B5) 0.845–0.885

SWIR1 (B6) 1.560–1.660
SWIR2 (B7) 2.100–2.300

Table 3. Spectral bands and acquisition dates of MODIS in the Study.

Sensor Band Wavelength Range (µm) Spatial Resolution (m) Acquisition Time

MODIS

Red (B1) 0.620–0.670
250

2016.12–2017.12
(acquisition time of

Landsat-8 images, The
1st of every month)

NIR (B2) 0.841–0.876

Blue (B3) 0.459–0.479

500
Green (B4) 0.545–0.565

MID-IR (B5) 1.230–1.250
SWIR1 (B6) 1.628–1.652
SWIR2 (B7) 2.105–2.155
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3. Experiments and Results
3.1. Evaluations of Spatio-Temporal Fusion Model

Cut the Landsat and MODIS images to specified size so that the ratio of the Landsat
and MODIS image is 16:1. From Tables 2 and 3, the band ranges of B2, B3, B4, B5, B6, and
B7 of Landsat-8 were similar to those of B3, B4, B1, B2, B6, and B7 of MODIS, respectively.

Twelve bands of Landsat-8 (B2, B3, B4, B5, B6, and B7) and MODIS (B3, B4, B1, B2, B6,
and B7) were put into the SR-FSDAF model to obtain the fusion image of the predicted date.
The fusion results of the first kind of non-heterogeneous mutation are shown in Figure 4.
From the perspective of subjective vision, the SR-FSDAF can capture and retain details of
the local better.
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Figure 4. Comparison of the fused image and original Landsat image of non-heterogeneous mutations.
(a) The Original Landsat image. (b) Fused image based on the SR-FSDAF method. (c) Fused image
based on the STARFM method. (d) Fused image based on the SRCNN embedding method. (e) Fused
image based on the FSDAF method.

From the fusion result images, STARFM, SRCNN-embedded model, FSDAF, and
SR-FSDAF have obtained similar fusion results with the true Landsat image. The SRCNN-
embedded method is similar to the SR-FSDAF, and SRCNN is used instead of TPS for
upsampling. Through the partial detail comparison, SR-FSDAF retains more details of the
roof.

Table 4 shows the specific calculated values of RMSE, SSIM, and SAM of the four
methods in Figure 4. The best fusion result values of each band are highlighted by thick
lines. The optimal value of SAM is 3.417 of SR-FSDAF, indicating that the fused image of
SR-FSDAF has the maximum relative spectral fidelity.

Table 4. Comparison of fusion accuracy of non-heterogeneous mutation images.

SR—FSDAF STARFM SRCNN Embedding FSDAF

RMSE SSIM SAM RMSE SSIM SAM RMSE SSIM SAM RMSE SSIM SAM

Band2 0.0046 0.979

3.417

0.0052 0.973

4.013

0.0048 0.974

3.655

0.0045 0.982

3.508

Band3 0.0047 0.986 0.0053 0.971 0.0049 0.977 0.0045 0.984
Band4 0.0065 0.981 0.0076 0.972 0.0071 0.968 0.0068 0.977
Band5 0.157 0.971 0.0198 0.983 0.0166 0.973 0.0182 0.962
Band6 0.0195 0.964 0.0231 0.979 0.0185 0.961 0.0197 0.958
Band7 0.0089 0.972 0.0174 0.948 0.0127 0.958 0.0096 0.965

Table 4 shows the specific calculated values of RMSE, SSIM, and SAM of the four
methods in Figure 5. The best fusion result values of each band are highlighted by thick
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lines. The optimal value of SAM is 3.417 of SR-FSDAF, indicating that the fused image of
SR-FSDAF has the maximum relative spectral fidelity.
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based on the STARFM method. (d) Fused image based on the SRCNN embedding method. (e) Fused
image based on the FSDAF method.

On Band1, FSDAF achieved better fusion results. For Band 2–Band 7, SR-FSDAF
obtained better values in RMSE and SSIM. The performance of SR-FSDAF proposed in this
paper on SSIM and RMSE is equivalent to that of FSDAF and SRCNN embedding models
on some bands, but the total results of SR-FSDAF are the best, and it has an excellent
performance in structure similarity and detail retention. The performance of FSDAF and
SRCNN embedded models is the second, and the results of STARFM are the worst.

The ground objects of the second group of experimental images changed abruptly in
the period. From the fusion result (Figure 5), STARFM, SRCNN embedding model, FSDAF,
and SR-FSDAF obtained similar fusion results. The SR-FSDAF method is more accurate in
capturing the change of ground objects and detailed information, but the fusion results of
all mutation methods are less satisfactory than those of the first group.

Table 5 shows specific values of the three evaluation indexes of the four methods of the
second set of images. The best fusion results for each band are sharpened and underlined.
The optimal value of SAM is 7.439 of SR-FSDAF. Band1–Band7 index optimal value method
is SR-FSDAF, FSDAF and SR-FADAF index performance is similar. SR—FADAF still has the
best fusion result among the four methods when the ground changes. However, compared
with the fusion results of the regions without mutation in the first group, the fusion quality
of the four methods decreases on heterogeneous changes.

Table 5. Comparison of fusion accuracy of heterogeneous mutation images.

SR—FSDAF STARFM SRCNN Embedding FSDAF

RMSE SSIM SAM RMSE SSIM SAM RMSE SSIM SAM RMSE SSIM SAM

Band2 0.0131 0.921

7.439

0.0162 0.878

9.879

0.0192 0.897

7.677

0.0127 0.912

7.965

Band3 0.0167 0.886 0.0213 0.856 0.0197 0.889 0.0186 0.887
Band4 0.0231 0.853 0.0289 0.837 0.0244 0.816 0.0212 0.835
Band5 0.0256 0.831 0.0347 0.814 0.0283 0.822 0.0257 0.824
Band6 0.0439 0.641 0.0565 0.627 0.0437 0.638 0.0431 0.633
Band7 0.0288 0.725 0.0417 0.677 0.0367 0.677 0.0326 0.689
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3.2. Inversion Based on Fused Images
3.2.1. Correlation Analysis of NH3-N

The measured data of water samples collected from 43 sampling points of Xinyang
key water function areas on 5 December 2016 and 1 January 2017 are randomly selected for
70%. We analyzed the Pearson correlation coefficient between 70% of the measured data
and the different bands or band combinations of the fused images generated by Landsat
and MODIS images on 7 December 2016, and 30 December 2016.

The correlations among the bands and their simple combinations were calculated.
Taking two different bands of A and B as examples, the correlation of A, B, (A + B),
(A − B), (A/B), (A − B)/(A + B) is calculated, respectively, and the highest correlation
coefficient among these combinations was taken as the R value between A and B to draw
the correlation matrix.

We calculated the correlation between NH3-N and these band combinations of different
fusion images and Landsat-8 images. The results were drawn into a correlation matrix
(Figure 6).
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Figure 6. The correlation coefficient matrix of NH3-N with bands and band combinations. The X and
Y axes are respective bands of images: (a) the original Landsat image; (b) the fused image based on
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significant at the 0.01 level.
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Selected bands or band combinations with correlations above 0.7 (Table 6). We found
that the highest NH3-N correlation band of STARFM changed to B/R after spatiotemporal
fusion. The highest correlation bands of SR-FSDAF, SRCNN embedding model, and FSDAF
are consistent with Landsat images, which are (R − G)/(R + G). The correlation between
SR-FSDAF and Landsat-8 was consistent, 0.81. This means that the surface reflection in
the SR-FSDAF fusion image is highly similar to that in the original image. The SR-FSDAF
fusion image can be used for the inversion of water quality parameters.

Table 6. Correlation values of different band combinations of fused image and Landsat-8 OLI.

Band
Combination r of STARFM r of SRCNN

Embedding r of FSDAF r of SR-FSDAF r of Landsat-8 OLI

B + NIR 0.71 0.73 0.74 0.74 0.78
G + R 0.70 0.75 0.75 0.77 0.79

G + R + NIR 0.68 0.71 0.75 0.74 0.77
R + NIR 0.73 0.76 0.76 0.77 0.80

B/R 0.77 0.759 0.764 0.793 0.84
R/B 0.752 0.701 0.71 0.78 0.80

(R − G)/(R + G) 0.74 0.76 0.76 0.81 0.81
(R − B)(R + B) 0.75 0.73 0.76 0.75 0.77

3.2.2. Accuracy Comparison of Inversion Models

We constructed inversion models of NH3-N based on statistical regression and random
forest using the SR-FSDAF fusion image, respectively. In this paper, we used 64 samples to
train the model and the remaining 24 samples for accuracy verification. The accuracy of
the models was evaluated by the difference between the measured and estimated values.

The optimal model inversion results are shown in Figure 7 with the band combination
of Red and Green. The optimal results of the statistical regression method are shown
in Figure 7a. The R2 is 0.66, RMSE is 0.16, and MAPE is 30.1%. The optimal inversion
results based on the random forest method are shown in Figure 7b for the combination of
Blue, Green, Red, and NIR. The R2 was 0.75, RMSE was 0.15, and MAPE was 23.7%. The
results showed that the random forest method had great advantages in estimating NH3-N
concentration.
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Figure 7. Accuracy assessment results of NH3-N estimated by the statistical regression models and
random forest model using SR-FSDAF fused images. The X-axis is the observed data, and the Y-axis
is the predicted data. (a) used the statistical regression models (quadratic model); (b) used random
forest model.
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3.2.3. Spatio-Temporal Distribution of the NH3-N

This paper conducted further research based on the random forest inversion model.
The inversion diagrams of NH3-N concentration from January to December 2017 were ob-
tained by inversion, and its distribution characteristics and variation trend were analyzed.

Figure 8 shows the percentage of water surface area of different NH3-N concentration
levels in twelve months. According to the relevant survey data, the Huaihe River system is
a wet season from July to August, a dry season from December to February, and a water-
stable season in other months. The changes in NH3-N concentrations in different periods
and the classification standard for NH3-N concentration are shown in Table 7. Figure 9
shows our classification of NH3-N concentrations and the distribution of NH3-N in January
2017.
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Table 7. NH3-N concentration in different water periods.

I II III VI V InferiorV

dry season 6.69 35.41 44.44 10.15 2.76 0.54
water-stable period 5.83 45.57 46.53 9.06 4.27 4.03

wet season 13.89 54.26 24.6 9.56 3.73 0.31
water-stable period 2.23 49.71 39.51 4.17 4.38 0

Comprehensive Figure 8 and Table 7, the main component of the water body in the
wet season is type II NH3-N concentration water; the water quality is the best, the NH3-N
concentration is the lowest, and the changing trend is gentle.

NH3-N concentration of water body in stable period is greatly disturbed. The NH3-N
concentration is relatively high in the early water stability period from March to June, and
the NH3-N concentration is relatively low in the late water stability period from September
to November.

The concentration of NH3-N is the highest in the dry season and changes gently. In
the dry season, the lowest concentration of NH3-N is in December, mainly Class II and
III concentrations. From December to February, the concentration of NH3-N gradually
increased. The area ratio of type InferiorV NH3-N concentrated water increased and
concentrated in the central region in January.
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4. Discussion

The reflectance characteristics of different concentrations of water quality parameters
in a specific wavelength range are the analytical basis for the quantitative inversion of
water quality parameters using the spectral information of remote sensing images. Our
study shows that the sensitive bands of NH3-N are Blue, Green, Red, and NIR, showing
the combined frequency characteristics of nitrogen-containing functional groups.

In the actual research process, remote sensing inversion is completed by establishing
effective connections between the point data obtained by field sampling and the surface
data of remote sensing pixels with different spatial resolutions. The difference between
the sampling and the satellite transit time, the limited water quantity of inland water,
and the significant Spatio-temporal changes cause the error of inversion results. Use the
Spatio-temporal fusion method to reduce the bias and reflect the change in water quality
parameters better, which is the significance of this study. The time resolution of Landsat
images is increased by using the Spatio-temporal algorithm and generating a series of
high-frequency sequential images for water quality inversion.

The SR-FSDAF model has better visual effects and index results than the STARFM,
SRCNN embedding model, and FSDAF in the case of non-heterogeneous mutation and
heterogeneous mutation. For non-heterogeneous mutation images, RMSE, SSIM, and SAM
of SR-FSDAF are 0.03 (mean), 0.976 (mean), and 3.417, respectively, and for heteroge-
neous mutation regions, RMSE, SSIM, and SAM are 0.021 (mean), 0.810 (mean) and 7.439,
respectively.

To prove the advantages of the SR-FSDAF fusion method for water quality monitoring,
STARFM, SRCNN embedding model, FSDAF, and SR-FSDAF fusion image are used to
calculate the correlation coefficient distribution of different band combinations and NH3-N.
The most sensitive band combination and correlation of SR-FSDAF are highly consistent
with Landsat-8 images. Therefore, the SR-FSDAF method can be used for quantitative
inversion of water quality parameters.

The change in water quality is closely related to the evolution of the surrounding
environment. NH3-N is an essential fertilizer for crop growth and a common component
in industrial and domestic sewage. The concentration of NH3-N in water is often affected
by sewage discharge from human production and life and drugs and fertilizers used in
agricultural activities. To further analyze the temporal and spatial variation characteristics
of water quality in Xinyang City, we selected four regions (Figure 9a–d). According to
the 1 km-land use classification map of Xinyang City in 2017 (Figure 10) and field survey,
region (a) is the main industrial region. (b) and (c) are farmland on both sides of the river,
mainly dry and paddy fields. The river in (d) passes through residential areas.
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results to verify its relationship with agricultural activities. According to the subtropical 
and temperate monsoon climate in the same period of rain and heat in Xinyang City, if 
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Figure 10. 1 km Land Use Classification Map of Xinyang City in 2017.

Figures 11–14 show the monthly NH3-N concentration changes in the four regions.
Figures 12–14 contain more farmland, so we compare the NH3-N concentration and NDVI
results to verify its relationship with agricultural activities. According to the subtropical
and temperate monsoon climate in the same period of rain and heat in Xinyang City, if
there is no interference from human activities, the change of NH3-N concentration is mainly
affected by the amount of river water, which is higher in December to February and lower
in June to August.
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In Figure 11, the river mainly flows through industrial production areas, where NH3-N
concentrations are highest in February, March, September, and October. NH3-N concen-
tration was low in January, May, August, and November. The NH3-N concentration in
this area did not show obvious seasonal variation and was mainly affected by industrial
wastewater discharge.

Figure 12 is mainly farmland area. According to the land use data, the area is mainly
dry land, and the main crop is wheat. It can be seen that during the growth period of wheat
from January to April and the maturity period of wheat in July, the concentration of NH3-H
is higher due to the use of fertilizer.

The area in Figure 13 is mainly a paddy field, planting crops for rice. During the rice
growing season from February to July, the NH3-N concentration in the river was higher.
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Figure 14 shows the mixed area of residential land and farmland. The annual variation
of NH3-N concentration in this area is relatively gentle, and there is no obvious seasonal
variation or agricultural production law, which belongs to the area affected by many factors.

Figures 12 and 13 show the partial interception of Huaihe River, which is the largest
river in the Xinyang area with a large water volume and fast flow velocity. Due to the
uneven distribution of water quality and the difference in flow velocity, the difference in
NH3-N concentration at the edge and center of the river is obvious.

Overall, during the rainy season, the NH3-N concentration was diluted by rainwater,
and the overall concentration was lower than in other periods; the concentration of NH3-N
was the highest in the dry season, and the concentration changed gently. In addition to
the impact of human activities, during the agricultural production period from January
to August, pollution, such as chemical fertilizers in farmland, will lead to the increase
in NH3-N concentration in water, which corresponds to the research results of other
scholars [20]. The irregular high concentration of NH3-N in cities is mainly caused by
industrial wastewater discharge.

5. Conclusions

In this study, an improved SR-FSDAF Spatio-temporal fusion model was proposed
and applied to monitor NH3-N concentration in small and medium inland waters (Xinyang
section of Huaihe River Basin). We studied the relationship between the field NH3-N
data and the fused image band. The research shows that SR-FSDAF provides an effective
monitoring method to improve the monitoring frequency and maintain the accuracy of
water quality prediction and has great application potential in quantitative remote sensing
of water quality. The random forest model constructed in this paper can be used as a
high-precision and efficient method for water quality prediction in the Xinyang section of
the Huaihe River Basin and provide data support for water quality monitoring and water
pollution control in the Huaihe River Basin.

Although the SR-FSDAF model achieves a better fusion effect, its prediction accuracy
for heterogeneous mutation is still not ideal, mainly because the spectral details of MODIS
images are very limited. At the same time, whether the SR-FSDAF model has achieved
similarly good results in the fusion of satellite images from other data sources remains
to be demonstrated. In future work, we will test the performance of the model in the
Spatio-temporal fusion of different images. In addition, more spectral information is
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obtained from multiple dimensions by using learning methods to improve the prediction
of heterogeneous mutations. For NH3-N remote sensing monitoring, more work is needed
to prove the adaptability of the random forest model to different regions.
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