Water Exchange between Deep Basins of the Bransfield Strait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sections across the Strait
2.2. In Situ Measurements and Data Processing
3. Results
3.1. Water Exchange between Western and Central Basins
3.2. Deep-Water Overflow between Central and Eastern Basins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huneke, W.; Huhn, O.; Schroeder, M. Water masses in the Bransfield Strait and adjacent seas, austral summer 2013. Polar Biol. 2016, 39, 789–798. [Google Scholar] [CrossRef]
- Vaughan, D.; Marshall, G.; Connolley, W.; Parkinson, C.; Mulvaney, R.; Hodgson, D.; King, J.; Pudsey, C.; Turner, J. Recent rapid regional climate warming on the Antarctic Peninsula. Clim Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Veit-Köhler, G.; Durst, S.; Schuckenbrock, J.; Hauquier, F.; Durán Suja, L.; Dorschel, B.; Vanreusel, A.; Martínez Arbizu, P. Oceanographic and topographic conditions structure benthic meiofauna communities in the Weddell Sea, Bransfield Strait and Drake Passage (Antarctic). Prog. Oceanogr. 2018, 162, 240–256. [Google Scholar] [CrossRef] [Green Version]
- Spiridonov, V. A Scenario of the Late-Pleistocene-Holocene Changes in the Distributional Range of Antarctic Krill (Euphausia superba). Mar. Ecol. 1996, 17, 519–541. [Google Scholar] [CrossRef]
- Atkinson, A.; Siegel, V.; Pakhomov, E.; Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 2004, 432, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Loeb, V.; Hofmann, E.; Klinck, J.; Holm-Hansen, O.; White, W. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarct. Sci. 2009, 21, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Reiss, C.; Cossio, A.; Santora, J.; Dietrich, K.; Murray, A.; Greg Mitchell, B.; Walsh, J.; Weiss, E.L.; Gimpel, C.; Jones, C.; et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Mar. Ecol. Prog. Ser. 2017, 568, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Perry, F.; Atkinson, A.; Sailley, S.; Tarling, G.; Hill, S.; Lucas, C.; Mayor, D. Habitat partitioning in Antarctic krill: Spawning hotspots and nursery areas. PLoS ONE 2019, 14, e0219325. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Song, P.; Li, Y.; Lin, L. An integrated, size-structured stock assessment of Antarctic krill, Euphausia superba. Front. Mar. Sci. 2021, 8, 710544. [Google Scholar] [CrossRef]
- Nordhausen, W. Distribution and growth of larval and adult Thysanoessa macrura (Euphausiacea) in the Bransfield Strait Region, Antarctica. Mar. Ecol. Prog. Ser. 1992, 83, 185–196. [Google Scholar] [CrossRef]
- Siegel, V. Distribution and population dynamics of Euphausia superba: Summary of recent findings. Polar Biol. 2005, 29, 1–22. [Google Scholar] [CrossRef]
- Siegel, V.; Reiss, C.; Dietrich, K.; Haraldsson, M.; Gerhard, R. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 77, 63–74. [Google Scholar] [CrossRef]
- Meyer, B.; Atkinson, A.; Bernard, K.; Brierley, A.; Driscoll, R.; Hill, S.; Marschoff, E.; Maschette, D.; Perry, F.; Reiss, C.; et al. Successful ecosystem-based management of Antarctic krill should address uncertainties in krill recruitment, behavior and ecological adaptation. Commun. Earth Environ. 2020, 1, 28. [Google Scholar] [CrossRef]
- Dorschel, B.; Gutt, J.; Huhn, O.; Bracher, A.; Huntemann, M.; Huneke, W.; Gebhardt, C.; Schröder, M.; Herr, H. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. 2016, 39, 765–787. [Google Scholar] [CrossRef]
- Gordon, A.L.; Nowlin, W.D. The basin waters of the Bransfield Strait. J. Phys. Oceanogr. 1978, 8, 258–264. [Google Scholar] [CrossRef]
- López, O.; Garcia, M.; Gomis, D.; Rojas, P.; Sospedra, J.; Sanchez-Arcilla, A. Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait (Antarctica). Deep Sea Res. Part I Oceanogr. Res. Pap. 1999, 46, 1755–1778. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Tokarczyk, R. Classification of water masses in the Bransfield Strait and Southern part of the Drake Passage using a method of statistical multidimensional analysis. Pol. Polar Res. 1987, 8, 333–336. [Google Scholar]
- García, M.; López, O.; Sospedra, J.; Espino, M.; Gràcia, V.; Morrison, G.; Pojas, P.; Figa, J.; Puigdefabregas, J.; Arcilla, A. Mesoscale variability in the Bransfield Strait region (Antarctica) during Austral summer. Ann. Geophys. 1994, 12, 856–867. [Google Scholar] [CrossRef]
- Niiler, P.; Amos, A.; Hu, J.-H. Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region. Deep Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, 943–959. [Google Scholar] [CrossRef]
- Zhou, M.; Niiler, P.; Zhu, Y.; Dorly, R. The western boundary current in the Bransfield Strait, Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 1244–1252. [Google Scholar] [CrossRef]
- Poulin, F.; Stegner, A.; Hernández-Arencibia, M.; Marrero-Díaz, A.; Sangrà, P. Steep shelf stabilization of the coastal Bransfield Current: Linear stability analysis. J. Phys. Oceanogr. 2014, 44, 714–732. [Google Scholar] [CrossRef]
- Sangrà, P.; Gordo, C.; Hernández-Arencibia, M.; Marrero-Díaz, A.; Rodríguez-Santana, A.; Stegner, A.; Martínez-Marrero, A.; Pelegrí, J.L.; Pichon, T. The Bransfield Current system. Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 390–402. [Google Scholar] [CrossRef]
- Ruiz Barlett, E.; Tosonotto, G.; Piola, A.; Sierra, M.; Mata, M. On the temporal variability of intermediate and deep waters in the Western Basin of the Bransfield Strait. Deep Sea Res. Part II 2017, 149, 31–46. [Google Scholar] [CrossRef]
- Morozov, E.; Krechik, V.; Frey, D.; Polukhin, A.; Sapozhnikov, P. Water Masses, Currents, and Phytoplankton in the Bransfield Strait in January 2020. In Antarctic Peninsula Region of the Southern Ocean; Advances in Polar Ecology; Morozov, E., Flint, M., Spiridonov, V., Eds.; Springer: Cham, Switzerland, 2021; Volume 6, pp. 55–64. [Google Scholar]
- Polukhin, A.; Morozov, E.; Tishchenko, P.; Frey, D.; Artemiev, V.; Borisenko, G.; Vidnichuk, A.; Marina, E.; Medvedev, E.; Popov, O.; et al. Water Structure in the Bransfield Strait (Antarctica) in January 2020: Hydrophysical, Optical and Hydrochemical Features. Oceanology 2021, 61, 632–644. [Google Scholar] [CrossRef]
- Veny, M.; Aguiar-González, B.; Marrero-Díaz, Á.; Rodríguez-Santana, Á. Seasonal circulation and volume transport of the Bransfield Current. Prog. Oceanogr. 2022, 204, 102795. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, G.; Hu, S. Influence of tides on mass transport in the Bransfield Strait and the adjacent areas, Antarctic. Polar Sci. 2020, 23, 100506. [Google Scholar] [CrossRef]
- Khimchenko, E.; Frey, D.; Morozov, E.G. Tidal internal waves in the Bransfield Strait, Antarctica. Russ. J. Earth Sci. 2020, 20, ES2006. [Google Scholar] [CrossRef] [Green Version]
- Savidge, D.; Amft, J. Circulation on the West Antarctic Peninsula derived from 6 years of shipboard ADCP transects. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1633–1655. [Google Scholar] [CrossRef]
- Wang, X.; Moffat, C.; Dinniman, M.; Klinck, J.; Sutherland, D.; Aguiar-González, B. Variability and Dynamics of Along-Shore Exchange on the West Antarctic Peninsula (WAP) Continental Shelf. J. Geophys. Res. 2022, 127, e2021JC017645. [Google Scholar] [CrossRef]
- Wilson, C.; Klinkhammer, G.; Chin, C. Hydrography within the central and east basins of the Bransfield Strait, Antarctica. J. Phys. Oceanogr. 1999, 29, 465–479. [Google Scholar] [CrossRef]
- Gordon, A.; Mensch, M.; Dong, Z.; Smethie, W.; de Bettencourt, J. Deep and bottom water of the Bransfield Strait eastern and central basins. J. Geophys. Res. Atmos. 2000, 105, 11337–11346. [Google Scholar] [CrossRef]
- Dotto, T.; Kerr, R.; Mata, M.; Garcia, A. Multidecadal freshening and lightening in the deep waters of the Bransfield Strait, Antarctica. J. Geophys. Res. 2016, 121, 3741–3756. [Google Scholar] [CrossRef] [Green Version]
- Krechik, V.; Frey, D.; Morozov, E. Peculiarities of water circulation in the central part of the Bransfield Strait in January 2020. Dokl. Earth Sci. 2021, 496, 92–95. [Google Scholar] [CrossRef]
- Izhitskiy, A.; Romanova, N.; Vorobieva, O.; Frey, D. Impact of Ice Melting on Oceanographic and Hydrobiological Characteristics of Surface Waters in the Powell Basin, Weddell Sea, in January–February 2020. Oceanology 2022, 62, 439–446. [Google Scholar] [CrossRef]
- Damini, B.; Kerr, R.; Dotto, T.; Mata, M. Long-term changes on the Bransfield Strait deep water masses: Variability, drivers and connections with the northwestern Weddell Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 179, 10367. [Google Scholar] [CrossRef]
- Marshall, G.; Stott, P.; Turner, J.; Connolley, W.; King, J.; Lachlan-Cope, T. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 2004, 31, L14205. [Google Scholar] [CrossRef]
- Mukhametyanov, R.; Frey, D.; Morozov, E. Currents in the Bransfield Strait Based on Geostrophic Calculations and Data of Instrumental Measurements. Izv. Atmos. Ocean. Phys. 2022, 58, 500–506. [Google Scholar] [CrossRef]
- Visbeck, M. Deep velocity profiling using Lowered Acoustic Doppler Current Profiler: Bottom track and inverse solution. J. Atmos. Ocean. Technol. 2002, 19, 794–807. [Google Scholar] [CrossRef]
- Egbert, G.; Erofeeva, S. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Sangrà, P.; Stegner, A.; Hernández-Arencibia, M.; Marrero-Díaz, A.; Salinas, C.; Aguiar-González, B. The Bransfield Gravity Current. Deep Sea Res. Part I Oceanogr. Res. Pap. 2017, 119, 1–15. [Google Scholar] [CrossRef]
- Morozov, E.; Zuev, O.; Zamshin, V.; Krechik, V.; Ostroumova, S.; Frey, D. Observations of icebergs in Antarctic cruises of the R/V “Akademik Mstislav Keldysh”. Russ. J. Earth. Sci. 2022, 22, ES2001. [Google Scholar] [CrossRef]
- Fofonoff, P.; Millard, R. Algorithms for Computation of Fundamental Properties of Seawater; UNESCO Technical Papers in Marine Science; Unesco: Paris, France, 1983; Volume 44, 53p. [Google Scholar]
- Morozov, E.; Frey, D.; Gladyshev, S.; Gladyshev, V. Hydrodynamics of bottom water flow from the Arctic to the Atlantic through the Denmark Strait. Izv. Atmos. Ocean. Phys. 2020, 56, 479–487. [Google Scholar] [CrossRef]
Station Number | Date/ Time (UTC) | Coordinates | CTD Depth, m/Ocean Depth, m | Type of Measurements |
---|---|---|---|---|
Section 1 | ||||
7318 | 26 January 2022 15:08 | 63°26.4′ S 60°05.7′ W | 102/110 | CTD/LADCP |
7319 | 26 January 2022 17:09 | 63°20.0′ S 60°13.4′ W | 613/616 | CTD/LADCP |
7320 | 26 January 2022 18:58 | 63°14.5′ S 60°19.4′ W | 531/536 | CTD/LADCP |
7321 | 26 January 2022 21:41 | 63°09.9′ S 60°25.5′ W | 660/666 | CTD/LADCP |
7322 | 26 January 2022 23:20 | 63°05.8′ S 60°29.9′ W | 650/655 | CTD/LADCP |
7323 | 27 January 2022 00:48 | 63°03.1′ S 60°32.8′ W | 368/373 | CTD/LADCP |
Section 2 | ||||
7308 | 24 January 2022 09:12 | 63°10.0′ S 58°20.1′ W | 186/191 | CTD/LADCP |
7309 | 24 January 2022 11:59 | 63°02.2′ S 58°35.7′ W | 184/190 | CTD/LADCP |
7310 | 24 January 2022 14:00 | 62°54.0′ S 58°53.2′ W | 742/746 | CTD/LADCP |
7311 | 24 January 2022 19:23 | 62°36.9′ S 59°27.2′ W | 1271/1276 | CTD/LADCP |
7313 | 25 January 2022 16:58 | 62°33.5′ S 59°33.8′ W | 392/397 | CTD/LADCP |
7314 | 25 January 2022 21:05 | 62°35.0′ S 59°31.8′ W | 606/612 | CTD/LADCP |
7315 | 26 January 2022 00:04 | 62°35.9′ S 59°29.3′ W | 988/994 | CTD/LADCP |
7316 | 26 January 2022 01:54 | 62°40.0′ S 59°22.0′ W | 1403/1409 | CTD/LADCP |
7317 | 26 January 2022 06:23 | 62°44.9′ S 59°11.7′ W | 1412/1422 | CTD/LADCP |
Section 3 | ||||
7294 | 21 January 2022 11:29 | 62°52.0′ S 57°09.4′ W | 148/152 | CTD/LADCP |
7295 | 21 January 2022 14:00 | 62°49.5′ S 57°15.8′ W | 167/171 | CTD |
7296 | 21 January 2022 15:26 | 62°45.6′ S 57°25.8′ W | 214/218 | CTD |
7297 | 21 January 2022 17:17 | 62°40.0′ S 57°39.6′ W | 716/720 | CTD |
7298 | 21 January 2022 20:59 | 62°37.0′ S 57°52.0′ W | 1227/1232 | CTD/LADCP |
7299 | 21 January 2022 23:25 | 62°31.0′ S 58°08.0′ W | 1768/1773 | CTD |
7301 | 22 January 2022 21:00 | 62°26.4′ S 58°21.1′ W | 1055/1063 | CTD |
7305 | 23 January 2022 15:55 | 62°21.0′ S 58°36.8′ W | 748/751 | CTD |
7306 | 23 January 2022 20:29 | 62°23.0′ S 58°30.0′ W | 1319/1323 | CTD |
Overflow | ||||
7352 | 31 January 2022 19:27 | 62°10.9′ S 56°41.0′ W | 1016/1023 | CTD/LADCP |
7354 | 01 February 2022 14:41 | 62°12.6′ S 56°35.8′ W | 968/972 | CTD/LADCP |
7355 | 01 February 2022 16:01 | 62°11.5′ S 56°38.5′ W | 897/902 | CTD/LADCP |
7356 | 01 February 2022 17:18 | 62°10.1′ S 56°43.1′ W | 925/931 | CTD/LADCP |
7357 | 01 February 2022 18:31 | 62°09.2′ S 56°46.2′ W | 905/911 | CTD/LADCP |
7387 | 14 February 2022 05:26 | 61°57.0′ S 56°10.0′ W | 2373/2379 | CTD/LADCP |
7388 | 14 February 2022 09:46 | 62°08.9′ S 56°36.5′ W | 1160/1165 | CTD/LADCP |
7389 | 14 February 2022 11:16 | 62°10.0′ S 56°38.9′ W | 1135/1139 | CTD/LADCP |
7390 | 14 February 2022 12:48 | 62°10.9′ S 56°40.7′ W | 1000/1006 | CTD/LADCP |
7391 | 14 February 2022 14:37 | 62°08.4′ S 56°31.8′ W | 1206/1212 | CTD/LADCP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, D.I.; Krechik, V.A.; Morozov, E.G.; Drozd, I.D.; Gordey, A.S.; Latushkin, A.A.; Mekhova, O.S.; Mukhametianov, R.Z.; Murzina, S.A.; Ostroumova, S.A.; et al. Water Exchange between Deep Basins of the Bransfield Strait. Water 2022, 14, 3193. https://doi.org/10.3390/w14203193
Frey DI, Krechik VA, Morozov EG, Drozd ID, Gordey AS, Latushkin AA, Mekhova OS, Mukhametianov RZ, Murzina SA, Ostroumova SA, et al. Water Exchange between Deep Basins of the Bransfield Strait. Water. 2022; 14(20):3193. https://doi.org/10.3390/w14203193
Chicago/Turabian StyleFrey, Dmitry I., Viktor A. Krechik, Eugene G. Morozov, Ilya D. Drozd, Alexandra S. Gordey, Alexander A. Latushkin, Olga S. Mekhova, Rinat Z. Mukhametianov, Svetlana A. Murzina, Sofia A. Ostroumova, and et al. 2022. "Water Exchange between Deep Basins of the Bransfield Strait" Water 14, no. 20: 3193. https://doi.org/10.3390/w14203193
APA StyleFrey, D. I., Krechik, V. A., Morozov, E. G., Drozd, I. D., Gordey, A. S., Latushkin, A. A., Mekhova, O. S., Mukhametianov, R. Z., Murzina, S. A., Ostroumova, S. A., Ponomarev, V. I., Salyuk, P. A., Smirnova, D. A., Shutov, S. A., & Zuev, O. A. (2022). Water Exchange between Deep Basins of the Bransfield Strait. Water, 14(20), 3193. https://doi.org/10.3390/w14203193