Using Adaptive Capacity to Shift Absorptive Capacity: A Framework of Water Reallocation in Highly Modified Rivers
Abstract
:1. Introduction
2. Theoretical Foundation for the Framework
2.1. Social–Hydrological Resilience
2.2. Governance Challenges of Water Reallocation
2.3. Justifying and Presenting a SHR-WR Framework for Highly Modified River Basins
3. Testing the Framework with a Focus on Sweden
3.1. Absorptive Capacity of the Riverine Eco- and Electric Systems in Sweden
3.2. Water Reallocation until 2019
3.3. Water Reallocation from 2019
3.4. Resilience Implications of Swedish Governance Modifications
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Bunn, S.E.; Arthington, A.H. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poff, N.L.; Zimmerman, J.K.H. Ecological Responses to Altered Flow Regimes: A Literature Review to Inform the Science and Management of Environmental Flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The Ecological Limits of Hydrologic Alteration (ELOHA): A New Framework for Developing Regional Environmental Flow Standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.; Allen, C.R.; Holling, C.S. Ecological Resilience, Biodiversity, and Scale. Ecosystems 1998, 1, 6–18. [Google Scholar] [CrossRef]
- De Leo, G.A.; Levin, S. The Multifaceted Aspects of Ecosystem Integrity. Conserv. Ecol. 1997, 1, 3. [Google Scholar] [CrossRef]
- Dudgeon, D. Multiple Threats Imperil Freshwater Biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R960–R967. [Google Scholar] [CrossRef]
- Walker, B.H. Biodiversity and Ecological Redundancy. Conserv. Biol. 1992, 6, 18–23. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. BioScience 2020, 70, 330–342. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives Brussels, 20.5.2020 COM(2020) 380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Hirsch, T.; Mooney, K.; Cooper, D.; Maruma Mrema, E. Global Biodiversity Outlook 5; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2020. [Google Scholar]
- Richter, B.D.; Andrews, S.; Dahlinghaus, R.; Freckmann, G.; Ganis, S.; Green, J.; Hardman, I.; Palmer, M.; Shalvey, J. Buy Me a River: Purchasing Water Rights to Restore River Flows in the Western USA. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 1–15. [Google Scholar] [CrossRef]
- Marston, L.; Cai, X. An Overview of Water Reallocation and the Barriers to Its Implementation. WIREs Water 2016, 3, 658–677. [Google Scholar] [CrossRef]
- Johnson, S.E.; Graber, B.E. Enlisting the Social Sciences in Decisions about Dam Removal: The Application of Social Science Concepts and Principles to Public Decisionmaking about Whether to Keep or Remove Dams May Help Achieve Outcomes Leading to Sustainable Ecosystems and Other Goals in the Public Interest. BioScience 2002, 52, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Energimyndigheten Värdebeskrivning Lule Älv [Description of Lule River’s Values]; Unpublished Report; Swedish Energy Agency: Eskilstuna, Sweden, 2018.
- Sparrevik, E.; Viklands, H.; Bergsten, P.; Harju, L. Ekologiska Effekter Och Verksamhetspåverkan Av Förändrade Produktionsvillkor i Vattenfalls Storskaliga Vattenkraftverk [Ecological Effects and Business Impacts from Changed Production Provisions in Vattenfall’s Large Scale Hydropower Instalations]. Vattenfall Power Consultant AB. 2011. Available online: https://docplayer.se/16485922-Ekologiska-effekter-och-verksamhetspaverkan-av-forandrade-produktionsvillkor-i-vattenfalls-storskaliga-vattenkraftverk.html (accessed on 25 September 2021).
- Baird, J.; Plummer, R. Water Resilience: Management and Governance in Times of Change; Springer Nature: Cham, Switzerland, 2021; ISBN 978-3-030-48110-0. [Google Scholar]
- Rodina, L. Defining “Water Resilience”: Debates, Concepts, Approaches, and Gaps. WIREs Water 2019, 6, e1334. [Google Scholar] [CrossRef]
- Troy, T.J.; Pavao-Zuckerman, M.; Evans, T.P. Debates—Perspectives on Socio-Hydrology: Socio-Hydrologic Modeling: Tradeoffs, Hypothesis Testing, and Validation. Water Resour. Res. 2015, 51, 4806–4814. [Google Scholar] [CrossRef]
- Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A Conceptual Framework for Assessing Socio-Hydrological Resilience under Change. Hydrol. Earth Syst. Sci. 2017, 21, 3655–3670. [Google Scholar] [CrossRef] [Green Version]
- Dewulf, A.; Karpouzoglou, T.; Warner, J.; Wesselink, A.; Mao, F.; Vos, J.; Tamas, P.; Groot, A.E.; Heijmans, A.; Ahmed, F.; et al. The Power to Define Resilience in Social–Hydrological Systems: Toward a Power-Sensitive Resilience Framework. WIREs Water 2019, 6, e1377. [Google Scholar] [CrossRef] [Green Version]
- Jager, H.I.; Smith, B.T. Sustainable Reservoir Operation: Can We Generate Hydropower and Preserve Ecosystem Values? River Res. Appl. 2008, 24, 340–352. [Google Scholar] [CrossRef]
- Barbour, E.J.; Holz, L.; Kuczera, G.; Pollino, C.A.; Jakeman, A.J.; Loucks, D.P. Optimisation as a Process for Understanding and Managing River Ecosystems. Environ. Model. Softw. 2016, 83, 167–178. [Google Scholar] [CrossRef]
- O’Hanley, J.R.; Pompeu, P.S.; Louzada, M.; Zambaldi, L.P.; Kemp, P.S. Optimizing Hydropower Dam Location and Removal in the São Francisco River Basin, Brazil to Balance Hydropower and River Biodiversity Tradeoffs. Landsc. Urban Plan. 2020, 195, 103725. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates—Perspectives on Socio-Hydrology: Capturing Feedbacks between Physical and Social Processes. Water Resour. Res. 2015, 51, 4770–4781. [Google Scholar] [CrossRef]
- Horne, A.; Szemis, J.M.; Kaur, S.; Webb, J.A.; Stewardson, M.J.; Costa, A.; Boland, N. Optimization Tools for Environmental Water Decisions: A Review of Strengths, Weaknesses, and Opportunities to Improve Adoption. Environ. Model. Softw. 2016, 84, 326–338. [Google Scholar] [CrossRef]
- Rudberg, P.M.; Smits, M. Learning-Based Intervention for River Restoration. Ecol. Soc. 2018, 23, 13. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Garrick, D.; Horne, J. Water Misallocation: Governance Challenges and Responses; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Cosens, B.A.; Stow, C.A. Resilience and water governance: Addressing fragmentation and uncertainty in water allocation and water quality law. In Social-Ecological Resilience and Law; Garmestani, A.S., Allen, C.R., Eds.; Columbia University Press: New York, NY, USA, 2014. [Google Scholar]
- Eurostat. Gross Electricity Generation Main Activity Electricity Only—Hydro 2018; Eurostat: Luxembourg, 2018. [Google Scholar]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Olsson, L.; Jerneck, A.; Thoren, H.; Persson, J.; O’Byrne, D. Why Resilience Is Unappealing to Social Science: Theoretical and Empirical Investigations of the Scientific Use of Resilience. Sci. Adv. 2015, 1, e1400217. [Google Scholar] [CrossRef] [Green Version]
- Biesbroek, R.; Dupuis, J.; Wellstead, A. Explaining through Causal Mechanisms: Resilience and Governance of Social–Ecological Systems. Sustain. Gov. 2017, 28, 64–70. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Plummer, R.; Armitage, D. Integrating perspectives on adaptive capacity and environmental governance. In Adaptive Capacity and Environmental Governance; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–19. [Google Scholar]
- Karpouzoglou, T.; Dewulf, A.; Clark, J. Advancing Adaptive Governance of Social-Ecological Systems through Theoretical Multiplicity. Environ. Sci. Policy 2016, 57, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hasselman, L. Adaptive Management; Adaptive Co-Management; Adaptive Governance: What’s the Difference? Australas. J. Environ. Manag. 2017, 24, 31–46. [Google Scholar] [CrossRef]
- Hill Clarvis, M.; Allan, A.; Hannah, D.M. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms. Environ. Sci. Policy 2014, 43, 98–110. [Google Scholar] [CrossRef]
- Hurlbert, M.A.; Diaz, H. Water Governance in Chile and Canada. Ecol. Soc. 2013, 18, 61. [Google Scholar] [CrossRef] [Green Version]
- Cosens, B.; Gunderson, L. Practical Panarchy for Adaptive Water Governance: Linking Law to Social-Ecological Resilience; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 3-319-72472-X. [Google Scholar]
- Sharma-Wallace, L.; Velarde, S.J.; Wreford, A. Adaptive Governance Good Practice: Show Me the Evidence! J. Environ. Manag. 2018, 222, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Suškevičs, M.; Hahn, T.; Rodela, R.; Macura, B.; Pahl-Wostl, C. Learning for Social-Ecological Change: A Qualitative Review of Outcomes across Empirical Literature in Natural Resource Management. J. Environ. Plan. Manag. 2018, 61, 1085–1112. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, J. Social Learning for Resilience in Social–Ecological Systems. Curr. Opin. Environ. Sustain. 2017, 28, 100–107. [Google Scholar] [CrossRef]
- Dehghanian, P.; Aslan, S.; Dehghanian, P. Maintaining Electric System Safety Through An Enhanced Network Resilience. IEEE Trans. Ind. Appl. 2018, 54, 4927–4937. [Google Scholar] [CrossRef]
- Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266. [Google Scholar] [CrossRef]
- Phillips, T.; Chalishazar, V.; McJunkin, T.; Maharjan, M.; Alam, S.M.S.; Mosier, T.; Somani, A. A Metric Framework for Evaluating the Resilience Contribution of Hydropower to the Grid. In Proceedings of the 2020 Resilience Week (RWS), Salt Lake City, UT, USA, 19–23 October 2020; pp. 78–85. [Google Scholar]
- Côté, I.M.; Darling, E.S. Rethinking Ecosystem Resilience in the Face of Climate Change. PLOS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef] [PubMed]
- McManamay, R.A.; Brewer, S.K.; Jager, H.I.; Troia, M.J. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs. Environ. Manag. 2016, 58, 365–385. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sordo-Ward, A.; Gabriel-Martin, I.; Garrote, L. Tradeoff between Economic and Environmental Costs and Benefits of Hydropower Production at Run-of-River-Diversion Schemes under Different Environmental Flows Scenarios. J. Hydrol. 2019, 572, 790–804. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; Ringler, C. Water Reallocation: Drivers, Challenges, Threats, and Solutions for the Poor. J. Hum. Dev. 2008, 9, 47–64. [Google Scholar] [CrossRef]
- Liu, H.; Cai, X.; Geng, L.; Zhong, H. Restoration of Pastureland Ecosystems: Case Study of Western Inner Mongolia. J. Water Resour. Plan. Manag. 2005, 131, 420–430. [Google Scholar] [CrossRef]
- Dadson, S.J.; Garrick, D.E.; Penning-Rowsell, E.C.; Hall, J.W.; Hope, R.; Hughes, J. Water Science, Policy and Management: A Global Challenge; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 1-119-52060-6. [Google Scholar]
- Pease, M. Constraints to Water Transfers in Unadjudicated Basins: The Middle Rio Grande as a Case Study. J. Contemp. Water Res. Educ. 2010, 144, 37–43. [Google Scholar] [CrossRef]
- Hellegers, P.; Leflaive, X. Water Allocation Reform: What Makes It so Difficult? Water Int. 2015, 40, 273–285. [Google Scholar] [CrossRef]
- Speed, R.; Yuanyuan, L.; Zhiwei, Z.; Le Quesne, T.; Pegram, G. Basin Water Allocation Planning: Principles, Procedures and Approaches for Basin Allocation Planning; UNESCO: Paris, France, 2013. [Google Scholar]
- Loch, A.; Pérez-Blanco, C.D.; Carmody, E.; Felbab-Brown, V.; Adamson, D.; Seidl, C. Grand Theft Water and the Calculus of Compliance. Nat. Sustain. 2020, 3, 1012–1018. [Google Scholar] [CrossRef]
- Mezger, G.; De Stefano, L.; González del Tánago, M. Assessing the Establishment and Implementation of Environmental Flows in Spain. Environ. Manag. 2019, 64, 721–735. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Staff Working Document Fitness Check of the Water Framework Directive, Groundwater Directive, Environmental Quality Standards Directive and Floods Directive; Brussels, 10.12.2019, SWD(2019) 439 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- WWAP. Managing Water under Uncertainty and Risk, The United Nations World Water Development Report 4, UN Water Reports, World Water Assessment Programme; UNESCO: Paris, France, 2012. [Google Scholar]
- Kadigi, R.M.J.; Mdoe, N.S.Y.; Ashimogo, G.C.; Morardet, S. Water for Irrigation or Hydropower Generation?—Complex Questions Regarding Water Allocation in Tanzania. Agric. Water Manag. 2008, 95, 984–992. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Knieper, C.; Lukat, E.; Meergans, F.; Schoderer, M.; Schütze, N.; Schweigatz, D.; Dombrowsky, I.; Lenschow, A.; Stein, U.; et al. Enhancing the Capacity of Water Governance to Deal with Complex Management Challenges: A Framework of Analysis. Environ. Sci. Policy 2020, 107, 23–35. [Google Scholar] [CrossRef]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of Water Resilience in the Anthropocene. J. Hydrol. X 2019, 2, 100009. [Google Scholar] [CrossRef]
- Wyborn, C. Co-Productive Governance: A Relational Framework for Adaptive Governance. Glob. Environ. Change 2015, 30, 56–67. [Google Scholar] [CrossRef]
- Hedström, P.; Ylikoski, P. Causal Mechanisms in the Social Sciences. Annu. Rev. Sociol. 2010, 36, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Ylikoski, P. Mechanism-Based Theorizing and Generalization from Case Studies. Stud. Hist. Philos. Sci. Part A 2019, 78, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, M.; Orach, K.; Lindkvist, E.; Martin, R.; Wijermans, N.; Bodin, Ö.; Boonstra, W.J. Toward a Methodology for Explaining and Theorizing about Social-Ecological Phenomena. Curr. Opin. Environ. Sustain. 2019, 39, 44–53. [Google Scholar] [CrossRef]
- Energiföretagen Vattenkraftsproduktion—Energiföretagen Sverige [Hydropower Production—Energy Companies Sweden]. Available online: https://www.energiforetagen.se/energifakta/elsystemet/produktion/vattenkraft/vattenkraftsproduktion/ (accessed on 26 April 2021).
- Vedung, E.; Brandel, M. Vattenkraften, Staten och de Politiska Partierna [Hydropower, the State and the Political Parties]; Nya Doxa: Nora, Sweden, 2001. [Google Scholar]
- Statens Offentliga Utredningar. Vattenverksamhet, Delbetänkande Av Miljöprocessutredningen [Water Works, Partial Conclusions from the Environmental Processes Investigation], SOU 2009:42; Swedish Government Committee: Stockholm, Sweden, 2009. [Google Scholar]
- Civilutskottet. Civilutskottets Betänkande 2017/18:CU31 Vattenmiljö Och Vattenkraft m.m. [The Committee of Civil Affairs’ Decision on Water Environment and Hydropower etc.]; Swedish Parliament Committee of Civil Affairs: Stockholm, Sweden, 2017. [Google Scholar]
- Falleti, T.G.; Lynch, J.F. Context and Causal Mechanisms in Political Analysis. Comp. Polit. Stud. 2009, 42, 1143–1166. [Google Scholar] [CrossRef]
- Dynesius, M.; Nilsson, C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science 1994, 266, 753. [Google Scholar] [CrossRef] [PubMed]
- HaV. Förslag till Nationell Plan För Omprövning Av Vattenkraft [Proposed National Plan for Hydropower Permit Reviews]; Swedish Agency for Marine and Water Management: Gothenburg, Sweden, 2019. [Google Scholar]
- Olsen Lundh, C. Tvenne Gånger Tvenne Ruttna Gärdesgårdar. Om Urminnes Hävd Och Vattenkraft [Twice Times Twice Rotting Farms. About Time Immemorial Rights and Hydropower]. Nord. Miljörättslig Tidskr. 2003, 2, 85–108. [Google Scholar]
- Rudberg, P.M. Sweden’s Evolving Hydropower Sector: Renovation, Restoration and Concession Change; Stockholm Environment Institute: Stockholm, Sweden, 2013. [Google Scholar]
- Rudberg, P.M. Constant Concessions under Changing Circumstances: The Water and Renewable Energy Directives and Hydropower in Sweden; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Rudberg, P.M.; Escobar, M.; Gantenbein, J.; Niiro, N. Mitigating the Adverse Effects of Hydropower Projects: A Comparative Review of River Restoration and Hydropower Regulation in Sweden and the United States. Georget. Int. Environ. Law Rev. 2015, 27, 251. [Google Scholar]
- Miljösamverkan. Tillsyn Av Vattenkraftens Egenkontroll Ett Handläggarstöd [Supervision of Hydropower Owners’ Control, Support for Administrators]; Miljösamverkan Sverige: Gothenburg, Sweden, 2012. [Google Scholar]
- Miljöbalken Swedish Environmental Code 11 Chap, 27 §; Vol. 1998:808. Swedish Code of Statutes. Available online: https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/miljobalk-1998808_sfs-1998-808 (accessed on 25 September 2021).
- Vattenkraftens miljöfond. ALLMÄNNA VILLKOR För Finansiering via Vattenkraftens Miljöfond Sverige AB Reviderade 2020-09-08 [General Terms for Financing from Hydropower’s Environmental Fund Sweden. Revised 2020-09-08]; Hydropower’s Environmental Fund Sweden: Gothenburg, Sweden, 2020. [Google Scholar]
- Finansdepartementet. Lagrådsremiss: Skatteförslag Med Anledning Av Energiöverenskommelsen [Council of Legislation Referral: Tax Proposal Related to the Energy Agreement]; Ministry of Finance: Stockholm, Sweden, 2017. [Google Scholar]
- Energimyndigheten. Nationell Strategi För Hållbar Vattenkraft [National Strategy for Sustainable Hydropower]; Swedish Energy Agency: Eskilstuna, Sweden, 2014. [Google Scholar]
- SWECO. En Kvantitativ Analys Av Potentialen För Effektutbyggnad i Befintliga Svenska Vattenkraftverk [A Quantitative Analysis of the Potential for Increased Effect in Existing Swedish Hydropower Stations] UPPDRAGSNUMMER 5472418000; SWECO: Stockholm, Sweden, 2016. [Google Scholar]
- SMHI. Ökad Kunskap Om Vattenuttag i Sverige Rapportering Av Regeringsuppdrag [Increased Knowledge of Water Abstraction in Sweden, Report on Government Task] HYDROLOGI Nr 126; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2020. [Google Scholar]
- Miller, S.W.; Budy, P.; Schmidt, J.C. Quantifying Macroinvertebrate Responses to In-Stream Habitat Restoration: Applications of Meta-Analysis to River Restoration. Restor. Ecol. 2010, 18, 8–19. [Google Scholar] [CrossRef]
- Energimyndigheten. Vattenkraftens Reglerbidrag Och Värde För Elsystemet [Hydropower’s Share of Regulation and Value for the Electric System] ER 2016:11; Swedish Energy Agency: Eskilstuna, Sweden, 2016. [Google Scholar]
- Bejarano, M.D.; Jansson, R.; Nilsson, C. The Effects of Hydropeaking on Riverine Plants: A Review. Biol. Rev. 2018, 93, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.K.; Garmestani, A.S.; Allen, C.R.; Arnold, C.A.T.; Birgé, H.; DeCaro, D.A.; Fremier, A.K.; Gosnell, H.; Schlager, E. Balancing Stability and Flexibility in Adaptive Governance: An Analysis of Tools Available in U.S. Environmental Law. Ecol. Soc. J. Integr. Sci. Resil. Sustain. 2017, 22, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeCaro, D.A.; Chaffin, B.C.; Schlager, E.; Garmestani, A.S.; Ruhl, J.B. Legal and Institutional Foundations of Adaptive Environmental Governance. Ecol. Soc. J. Integr. Sci. Resil. Sustain. 2017, 22, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatn, A. Institutions and the Environment Edward Elgar; Edward Elgar: Cheltenham, UK, 2005. [Google Scholar]
- Sabatier, P.A.; Weible, C.M. Theories of the Policy Process; Westview Press: Boulder, CO, USA, 2014; ISBN 0-8133-4927-3. [Google Scholar]
- Cosens, B.; Gunderson, L. Adaptive Governance in North American Water Systems: A Legal Perspective on Resilience and Reconciliation. In Water Resilience Management and Governance in Times of Change; Baird, J., Plummer, R., Eds.; Springer: Cham, Switzerland, 2021; ISBN 3-030-48110-7. [Google Scholar]
- Rosa, L.; Chiarelli, D.D.; Tu, C.; Rulli, M.C.; D’Odorico, P. Global Unsustainable Virtual Water Flows in Agricultural Trade. Environ. Res. Lett. 2019, 14, 114001. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudberg, P.M.; Karpouzoglou, T. Using Adaptive Capacity to Shift Absorptive Capacity: A Framework of Water Reallocation in Highly Modified Rivers. Water 2022, 14, 193. https://doi.org/10.3390/w14020193
Rudberg PM, Karpouzoglou T. Using Adaptive Capacity to Shift Absorptive Capacity: A Framework of Water Reallocation in Highly Modified Rivers. Water. 2022; 14(2):193. https://doi.org/10.3390/w14020193
Chicago/Turabian StyleRudberg, Peter M., and Timos Karpouzoglou. 2022. "Using Adaptive Capacity to Shift Absorptive Capacity: A Framework of Water Reallocation in Highly Modified Rivers" Water 14, no. 2: 193. https://doi.org/10.3390/w14020193
APA StyleRudberg, P. M., & Karpouzoglou, T. (2022). Using Adaptive Capacity to Shift Absorptive Capacity: A Framework of Water Reallocation in Highly Modified Rivers. Water, 14(2), 193. https://doi.org/10.3390/w14020193