Extreme Precipitation Events on the East Coast of Brazil’s Northeast: Numerical and Diagnostic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set
2.3. Numerical Simulations
2.4. Forecast Verification
Physics | Number Options 1 | Acronym | Scheme | Reference |
---|---|---|---|---|
Microphysics | 28 | TpsonAA | Thompson Aerosol-Aware | Thompson and Eidhammer [58] |
2 | PurdLin | Purdue Lin | Chen and Sun [59] | |
5 | EtaFerr | Eta (Ferrier) | Rogers et al. [60] | |
8 | Thompson | Thompson | Thompson et al. [61] | |
10 | Morrison | Morrison 2-Mom | Morrison et al. [62] | |
18 | NSSL + CCN | NSSL 2-Mom + CCN | Mansell et al. [63] | |
24 | WSM7 | WRF Single-Moment 7-Class | Bae et al. [64] | |
26 | WDM7 | WRF Double-Moment 7-Class | Bae et al. [64] | |
6 | WSM6 | WRF Single-Moment 6-Class | Hong and Lim [65] | |
16 | WDM6 | WRF Double-Moment 6-Class | Hong and Lim [66] | |
4 | WSM5 | WRF Single-Moment 5-Class | Hong and Lim [66] | |
Planetary boundary layer 2 | 2 (2) | MYJ | Mellor–Yamada–Janjic Scheme | Janjic [67] |
6 (2) | MYNN3 | Mellor–Yamada Nakanishi and Niino Level 3 | Nakanishi and Niino [68] | |
7 (7) | ACM2 | Asymmetric Convective Model | Pleim [69] | |
10 (10) | TEMF | Total Energy–Mass Flux | Angevine et al. [70] | |
11 (1) | ShinH | Shin–Hong Scheme | Shin and Hong [71] | |
4 (4) | QNSE | Quasi-Normal Scale Elimination | Sukoriansky et al. [72] | |
1 (1) | YSU | Yonsei University Scheme | Hong et al. [29] | |
0 (5) | SMS3D | Subgrid Mixing Scheme | Zhang et al. [73] | |
5 (5) | MYNN2 | Mellor–Yamada Nakanishi and Niino Level 2.5 | Nakanishi and Niino [68] | |
Cumulus | 1 | KainF | Kain–Fritsch | Kain [74] |
3 | GF | Grell–Freitas | Grell and Freitas [75] | |
5 | G3 | Grell-3 | Grell and Devenyi [76] | |
6 | Tiedtke | Tiedtke Scheme | Zhang et al. [77] | |
10 | KFCuP | Kain–Fritsch Cumulus Potential | Berg et al. [78] | |
Land surface 3 | 1 | TDS | Thermal Diffusion Scheme | Dudhia [79] |
2 | Noah | Unified Noah LSM | Tewari et al. [80] | |
3 | RUC | Rapid Update Cycle | Benjamin et al. [81] | |
4 | NoahMP | Noah Multi-Physics | Niu et al. [82] | |
4 (1) | UCM | Urban Canopy Model | Chen et al. [83] | |
4 (2) 4 | BEP | Building Environment Parameterization | Salamanca and Martilli [84] | |
4 (3) 4 | BEM | Building Energy Model | Martilli et al. [85] |
2.5. Diagnostic Analysis
3. Results
3.1. Synoptic Analysis
3.2. Numerical Simulations Analysis
3.3. Diagnostic Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Assis Dias, M.C.; Saito, S.M.; dos Santos Alvalá, R.C.; Stenner, C.; Pinho, G.; Nobre, C.A.; de Souza Fonseca, M.R.; Santos, C.; Amadeu, P.; Silva, D.; et al. Estimation of exposed population to landslides and floods risk areas in Brazil, on an intra-urban scale. Int. J. Disaster Risk Reduct. 2018, 31, 449–459. [Google Scholar] [CrossRef]
- CEPED. Atlas Brasileiro de Desastres Naturais 1991 a 2010: Volume Brasil; CEPED UFSC: Florianópolis, Brazil, 2012; ISBN 9788564695085. [Google Scholar]
- Avelar, A.S.; Netto, A.L.C.; Lacerda, W.A.; Becker, L.B.; Mendonça, M.B. Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. Landslide Sci. Pract. Glob. Environ. Chang. 2013, 4, 265–270. [Google Scholar] [CrossRef]
- Luiza, A.; Netto, C.; Sato, A.M.; de Souza, A.; Vianna, L.G.G.; Araújo, I.S.; David, L.C.; Lima, P.H.; Silva, A.P.A.; Silva, R.P. Landslide Science and Practice; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Metodiev, D.; de Andrade, M.R.M.; Mendes, R.M.; de Moraes, M.A.E.; Konig, T.; Bortolozo, C.A.; Bernardes, T.; Luiz, R.A.F.; Coelho, J.O.M. Correlation between rainfall and mass movements in North Coast Region of Sao Paulo State, Brazil for 2014–2018. Int. J. Geosci. 2018, 9, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Ávila, A.; Justino, F.; Wilson, A.; Bromwich, D.; Amorim, M. Recent precipitation trends, flash floods and landslides in southern Brazil. Environ. Res. Lett. 2016, 11, 114029. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Espinoza, N.S.; Dos Santos, C.A.C.; Silva, M.T.; Gomes, H.B.; Ferreira, R.R.; da Silva, M.L.; Santos E Silva, C.M.; de Oliveira, C.P.; Medeiros, J.; Giovannettone, J.; et al. Landslides triggered by the may 2017 extreme rainfall event in the east coast northeast of Brazil. Atmosphere 2021, 12, 1261. [Google Scholar] [CrossRef]
- Smithson, P.A. IPCC, 2001: Climate change 2001: The scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change, edited by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. No. of pages: 881. Price £34.95, US$ 49.95, ISBN 0-521-01495-6 (paperback). £90.00, US$ 130.00, ISBN 0-521-80767-0 (hardback). Int. J. Climatol. 2002, 22, 1144. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781107025066. [Google Scholar]
- Freire, A.F.R. A Política Nacional de Proteção e Defesa Civil e as Ações do Governo Federal na Gestão de Risco de Desastres. Master’s Dissertation, Escola Nacional de Saúde Pública Sergio Arouca, Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Elsevier Inc.: Oxford, UK, 2013. [Google Scholar]
- de Medeiros, E.S.; de Lima, R.R.; de Olinda, R.A.; dos Santos, C.A.C. Modeling spatiotemporal rainfall variability in Paraíba, Brazil. Water 2019, 11, 1843. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.R.B.F.; dos Santos, C.A.C.; Silva, D.J.F.; Santos, C.A.G.; Silva, R.M.D.; Brito, J.I.B.D. Climate indices-based analysis of rainfall spatiotemporal variability in Pernambuco State, Brazil. Water 2022, 14, 2190. [Google Scholar] [CrossRef]
- Lala, J.; Bazo, J.; Anand, V.; Block, P. Optimizing forecast-based actions for extreme rainfall events. Clim. Risk Manag. 2021, 34, 100374. [Google Scholar] [CrossRef]
- Merino, A.; García-Ortega, E.; Navarro, A.; Sánchez, J.L.; Tapiador, F.J. WRF hourly evaluation for extreme precipitation events. Atmos. Res. 2022, 274, 106215. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Pan, M.; Beck, H.E.; Sheffield, J. Performance of state-of-the-art C3S European seasonal climate forecast models for mean and extreme precipitation over Africa. Water Resour. Res. 2022, 58, e2021WR031480. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Gao, L.; Wei, J.; Lei, X.; Ma, M.; Wang, L.; Guan, X.; Lin, H. Simulation of an extreme precipitation event using ensemble-based WRF model in the Southeastern Coastal Region of China. Atmosphere 2022, 13, 194. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. Extreme precipitation in models: An evaluation. Weather Forecast. 2016, 31, 1853–1879. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, A.C.; Ferreira, J.; Nunes, J.P.; Kaiser, J.J.; Rocha, A. Weather model performance on extreme rainfall events simulation’s over Western Iberian Peninsula. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 9163–9191. [Google Scholar] [CrossRef] [Green Version]
- Nooni, I.K.; Tan, G.; Hongming, Y.; Saidou Chaibou, A.A.; Habtemicheal, B.A.; Gnitou, G.T.; Lim Kam Sian, K.T.C. Assessing the performance of WRF Model in simulating heavy precipitation events over East Africa using satellite-based precipitation product. Remote Sens. 2022, 14, 1964. [Google Scholar] [CrossRef]
- Gettelman, A.; Rood, R.B. Demystifying Climate Models: A Users Gruide to Earth System Models, 1st ed.; Springer Open: Heidelberg, Germany, 2016; ISBN 978-3-662-48959-8. [Google Scholar]
- Jeworrek, J.; West, G.; Stull, R. WRF precipitation performance and predictability for systematically varied parameterizations over complex terrain. Weather Forecast. 2021, 36, 893–913. [Google Scholar] [CrossRef]
- Kessler, E. On the distribution and continuity of water substance in atmospheric circulations. Meteorol. Monogr. 1969, 10, 96. [Google Scholar]
- Arakawa, A. The cumulus parameterization problem: Past, present, and future. J. Clim. 2004, 17, 2493–2525. [Google Scholar] [CrossRef]
- Cohen, A.E.; Cavallo, S.M.; Coniglio, M.C.; Brooks, H.E. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast. 2015, 30, 591–612. [Google Scholar] [CrossRef]
- Hong, S.-Y.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.; Romine, G.; Snyder, C. Model improvement via systematic investigation of physics tendencies. Mon. Weather Rev. 2020, 148, 671–688. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Tao, W.K.; Shi, J.J.; Angelis, C.F.; Martinez, M.A.; Marcos, C.; Rodriguez, A.; Hou, A. A comparison of perturbed initial conditions and multiphysics ensembles in a severe weather episode in Spain. J. Appl. Meteorol. Climatol. 2012, 51, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Mahbub Alam, M. Impact of cloud microphysics and cumulus parameterization on simulation of heavy rainfall event during 7–9 October 2007 over Bangladesh. J. Earth Syst. Sci. 2014, 123, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Jeworrek, J.; West, G.; Stull, R. Evaluation of cumulus and microphysics parameterizations in WRF across the convective gray zone. Weather Forecast. 2019, 34, 1097–1115. [Google Scholar] [CrossRef]
- Lu, J.; Feng, T.; Li, J.; Cai, Z.; Xu, X.; Li, L.; Li, J. Impact of assimilating Himawari-8-derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of Typhoon Hato. J. Geophys. Res. Atmos. 2019, 124, 3050–3071. [Google Scholar] [CrossRef]
- On, N.; Kim, H.M.; Kim, S. Effects of resolution, cumulus parameterization scheme, and probability forecasting on precipitation forecasts in a high-resolution limited-area ensemble prediction system. Asia-Pacific J. Atmos. Sci. 2018, 54, 623–637. [Google Scholar] [CrossRef]
- Gao, Y.; Leung, L.R.; Zhao, C.; Hagos, S. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos. 2017, 122, 2714–2733. [Google Scholar] [CrossRef]
- Wagner, A.; Heinzeller, D.; Wagner, S.; Rummler, T.; Kunstmann, H. Explicit convection and scale-aware cumulus parameterizations: High-resolution simulations over areas of different topography in Germany. Mon. Weather Rev. 2018, 146, 1925–1944. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, X. The role of the planetary boundary layer parameterization schemes on the meteorological and aerosol pollution simulations: A review. Atmos. Res. 2020, 239, 104890. [Google Scholar] [CrossRef]
- Falasca, S.; Gandolfi, I.; Argentini, S.; Barnaba, F.; Casasanta, G.; Di Liberto, L.; Petenko, I.; Curci, G. Sensitivity of near-surface meteorology to PBL schemes in WRF simulations in a port-industrial area with complex terrain. Atmos. Res. 2021, 264, 105824. [Google Scholar] [CrossRef]
- He, J.J.; Yu, Y.; Yu, L.J.; Liu, N.; Zhao, S.P. Impacts of uncertainty in land surface information on simulated surface temperature and precipitation over China. Int. J. Climatol. 2017, 37, 829–847. [Google Scholar] [CrossRef]
- López-Bravo, C.; Caetano, E.; Magaña, V. Forecasting summertime surface temperature and precipitation in the Mexico city metropolitan area: Sensitivity of the wrf model to land cover changes. Front. Earth Sci. 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D.J.; Ming, X.; Wicker, L.J.; Kelleher, K.E.; Foster, M.P.; Schaefer, J.T.; Schneider, R.S.; Benjamin, S.G.; Weygandt, S.S.; Ferree, J.T.; et al. Convective-scale warn-on-forecast system: A vision for 2020. Bull. Am. Meteorol. Soc. 2009, 90, 1487–1499. [Google Scholar] [CrossRef]
- Jorgensen, A.P.; Weckwerth, T.M. Forcing and organization of convective systems. In Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas; American Meteorological Society: Boston, MA, USA, 2003; pp. 75–104. ISBN 78-1-878220-36-3. [Google Scholar]
- Taszarek, M.; Allen, J.T.; Brooks, H.E.; Pilguj, N.; Czernecki, B. Environments in a warming climate. Bull. Am. Meteorol. Soc. 2021, 102, 296–322. [Google Scholar] [CrossRef]
- Westermayer, A.T.; Groenemeijer, P.; Pistotnik, G.; Sausen, R.; Faust, E. Identification of favorable environments for thunderstorms in reanalysis data. Meteorol. Zeitschrift 2017, 26, 59–70. [Google Scholar] [CrossRef]
- Sherburn, K.D.; Parker, M.D. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Weather Forecast. 2014, 29, 854–877. [Google Scholar] [CrossRef]
- Poletti, M.L.; Parodi, A.; Turato, B. Severe hydrometeorological events in Liguria region: Calibration and validation of a meteorological indices-based forecasting operational tool. Meteorol. Appl. 2017, 24, 560–570. [Google Scholar] [CrossRef] [Green Version]
- Fabry, F. Radar Meteorology: Principles and Practice, 1st ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-07046-2. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- CENAD. Anuário Brasileiro de Desastres Naturais 2011. Cent. Nac. Gerenciamento Riscos e Desastr. 2012, 1–82. Available online: https://antigo.mdr.gov.br/images/stories/ArquivosDefesaCivil/ArquivosPDF/publicacoes/Anuario-de-Desastres-Naturais-2011.pdf (accessed on 16 August 2022).
- CNM. Danos e prejuízos causados por desastres no Brasil entre 2013 a 2022. Confed. Nac. Municípios 2022, 1–18. Available online: https://www.cnm.org.br/biblioteca/download/15317 (accessed on 16 August 2022).
- CEMADEN. Anuário da Sala de Situação do Cemaden 2017. Cent. Nac. Monit. E Alertas Desastr. Nat. 2019, 1–51. Available online: http://www2.cemaden.gov.br/wp-content/uploads/2020/06/Anuario_Sala_Situa%C3%A7%C3%A3o_2017.pdf (accessed on 16 August 2022).
- Instituto Brasileiro de Geografia e Estatística (IBGE). População em áreas de risco no Brasil; Rio de Janeiro, Brasil, 2018. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101589.pdf (accessed on 16 August 2022).
- De Assis Dias, M.C.; Saito, S.M.; dos Santos Alvalá, R.C.; Seluchi, M.E.; Bernardes, T.; Camarinha, P.I.M.; Stenner, C.; Nobre, C.A. Vulnerability index related to populations at-risk for landslides in the Brazilian Early Warning System (BEWS). Int. J. Disaster Risk Reduct. 2020, 49, 101742. [Google Scholar] [CrossRef]
- Dai, D.; Chen, L.; Ma, Z.; Xu, Z. Evaluation of the WRF physics ensemble using a multivariable integrated evaluation approach over the Haihe river basin in northern China. Clim. Dyn. 2021, 57, 557–575. [Google Scholar] [CrossRef]
- Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-E.P. Sensitivity assessment of WRF parameterizations over Europe. Proceedings 2017, 1, 119. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Chen, S.H.; Sun, W.Y. A one-dimensional time dependent cloud model. J. Meteorol. Soc. Japan. Ser. II 2002, 80, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.; Black, T.; Ferrier, B.; Lin, Y.; Parrish, D.; Dimego, G. Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in Resolution, New Cloud Microphysics, Modified Precipitation Assimilation, Modified 3DVAR Analysis. Available online: https://www.emc.ncep.noaa.gov/users/mesoimpldocs/mesoimpl/eta12tpb/ (accessed on 16 August 2022).
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Bae, S.Y.; Hong, S.Y.; Tao, W.K. Development of a single-moment cloud microphysics scheme with prognostic hail for the Weather Research and Forecasting (WRF) model. Asia-Pacific J. Atmos. Sci. 2019, 55, 233–245. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lim, J.-O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Lim, K.S.S.; Hong, S.Y. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Japan. Ser. II 2009, 87, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Angevine, W.M.; Jiang, H.; Mauritsen, T. Performance of an Eddy diffusivity-mass flux scheme for shallow cumulus boundary layers. Mon. Weather Rev. 2010, 138, 2895–2912. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.H.; Hong, S.Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Perov, V. ‘Application of a New Spectral Theory of stably stratified turbulence to the atmospheric boundary layer over Sea Ice. ’ Bound. Layer Meteorol. 2005, 117, 231–257. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, J.W.; Chen, B.; Grell, E.D. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Weather Rev. 2018, 146, 2023–2045. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2013, 13, 23845–23893. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1-38-4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke Cumulus parameterization scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.K.; Gustafson, W.I.; Kassianov, E.I.; Deng, L. Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Weather Rev. 2013, 141, 134–147. [Google Scholar] [CrossRef]
- Dudhia, J. A multi-layer soil temperature model for MM5. In Proceedings of the Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, USA, 22–24 July 1996. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th conference on numerical weather prediction, Seattle, WA, USA, 14 January 2004; pp. 11–15. [Google Scholar]
- Benjamin, S.G.; Grell, G.A.; Brown, J.M.; Smirnova, T.G.; Bleck, R. Mesoscale weather prediction with the RUC hybrid isentropic–terrain-following coordinate model. Mon. Weather Rev. 2004, 132, 473–494. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, 12109. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Salamanca, F.; Martilli, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol. 2010, 99, 345–356. [Google Scholar] [CrossRef]
- Martilli, A.; Clappier, A.; Rotach, M.W. An urban surface exchange parameterisation for mesoscale models. Bound. Layer Meteorol. 2002, 104, 261–304. [Google Scholar] [CrossRef]
- Fedorova, N.; Levit, V.; Campos, A.M.V. Brazilian Northeast jet stream: Association with synoptic-scale systems. Meteorol. Appl. 2018, 25, 261–268. [Google Scholar] [CrossRef] [Green Version]
- de Morais, M.D.C.; Gan, M.A.; Yoshida, M.C. Features of the upper tropospheric cyclonic vortices of Northeast Brazil in life cycle stages. Int. J. Climatol. 2021, 41, E39–E58. [Google Scholar] [CrossRef]
- Gomes, H.B.; Ambrizzi, T.; Herdies, D.L.; Hodges, K.; Pontes Da Silva, B.F. Easterly wave disturbances over Northeast Brazil: An observational analysis. Adv. Meteorol. 2015, 2015, 176238. [Google Scholar] [CrossRef] [Green Version]
- Araújo Palharini, R.S.; Vila, D.A. Climatological behavior of precipitating clouds in the northeast region of Brazil. Adv. Meteorol. 2017, 2017, 5916150. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Q.; Xue, H. The role of initial cloud condensation nuclei concentration in hail using the WRF NSSL 2-moment microphysics scheme. Adv. Atmos. Sci. 2017, 34, 1106–1120. [Google Scholar] [CrossRef]
- Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Hazra, A.; Chaudhari, H.S.; Ranalkar, M.; Chen, J.P. Role of interactions between cloud microphysics, dynamics and aerosol in the heavy rainfall event of June 2013 over Uttarakhand, India. Q. J. R. Meteorol. Soc. 2017, 143, 986–998. [Google Scholar] [CrossRef]
- Almeida, G.P.; Borrmann, S.; Leal Junior, J.B.V. Cloud condensation nuclei (Ccn) concentration in the brazilian northeast semi-arid region: The influence of local circulation. Meteorol. Atmos. Phys. 2014, 125, 159–176. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Souza, C.T.; de Oliveira, N.P.M.; Melo, A.K.S.; Lopes, F.J.S.; Landulfo, E.; Elbern, H.; Hoelzemann, J.J. Analysis of atmospheric aerosol optical properties in the Northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/CALIPSO satellites, AERONET photometers and a ground-based lidar. Atmosphere 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.M.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteorol. Climatol. 2010, 49, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shen, X.; Huang, W. A Comparison of boundary-layer characteristics simulated using different parametrization schemes. Bound. Layer Meteorol. 2016, 161, 375–403. [Google Scholar] [CrossRef]
- Mu, Z.; Zhou, Y.; Peng, L.; He, Y. Numerical rainfall simulation of different WRF parameterization schemes with different spatiotemporal rainfall evenness levels in the Ili region. Water 2019, 11, 2569. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, A.; Hu, H. Precipitation simulation from the cumulus convection parameterization schemes based on the WRF model in the Weihe River Basin, China. J. Phys. Conf. Ser. 2021, 2006, 012004. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Evaluation of MM5 high-resolution real-time forecasts over the urban area of Athens, Greece. J. Appl. Meteorol. Climatol. 2004, 43, 1666–1678. [Google Scholar] [CrossRef]
- Bryan, G.H.; Wyngaard, J.C.; Fritsch, J.M. Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev. 2003, 131, 2394–2416. [Google Scholar] [CrossRef]
- Banacos, P.C.; Schultz, D.M. The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Weather Forecast. 2005, 20, 351–366. [Google Scholar] [CrossRef]
Date | Municipalities Affected | Higher Rainfall Rates | Rain Duration (h) | Total Accumulated (mm) | ||
---|---|---|---|---|---|---|
mm/10 min | mm/1 h | mm/24 h | ||||
20170528 | 16 | 14.9 | 47.3 | 280.4 | 48 | 395.9 |
20170720 | 16 | 23.2 | 29.1 | 170.5 | 72 | 264.0 |
20180422 | 5 | 15.1 | 61.0 | 135.7 | 57 | 193.6 |
20190529 | 4 | 15.6 | 55.2 | 212.7 | 37 | 224.0 |
20190613 | 7 | 18.5 | 69.4 | 236.0 | 48 | 236.6 |
Event Date | MP | PBL | CUM | SFC | RE (%) | Bias | σ | R * | RMS | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Data | Model | Value | Norm | ||||||||
20170528 | Thompson | MYJ | KFCuP | RUC | −49.2 | −1.38 | 5.455 | 1.230 | 0.221 | 5.699 | 0.975 |
20170720 | NSSL + CCN | ACM2 | KFCuP | RUC | 3.6 | 0.08 | 3.386 | 2.445 | 0.860 | 3.842 | 0.528 |
20180422 | NSSL + CCN | ACM2 | KFCuP | RUC | −14.2 | −0.23 | 3.695 | 2.015 | 0.546 | 3.936 | 0.838 |
20190529 | TpsonAA | MYJ | KFCuP | RUC | −23.3 | −0.11 | 2.872 | 1.176 | 0.322 | 2.967 | 0.951 |
20190613 | NSSL + CCN | TEMF | GF | TDS | 2.7 | 0.08 | 5.691 | 6.429 | 0.774 | 8.421 | 0.727 |
Schemes | Event 1 | Event 2 | Event 3 | Event 4 | Event 5 | AVG | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
ΔRE | Best | ΔRE | Best | ΔRE | Best | ΔRE | Best | ΔRE | Best | (ΔRE) | |
MPH | 173.8 | −147.3 | −34.4 | −65.6 | 365.1 | 112.5 | 553.8 | −99.8 | 259.7 | 18.0 | 263.6 |
PBL 1 | 7.9 | −86.2 | 20.3 | −46.9 | 18.7 | −71.1 | 9.4 | −89.0 | 13.4 | 18.0 | 13.9 |
PBL 2 | 324.0 | 237.0 | 316.9 | 270.0 | 183.6 | 122.5 | 199.6 | 110.6 | 92.6 | 18.0 | 223.3 |
CUM 3 | −47.0 | −49.2 | −56.4 | 3.6 | −67.2 | −14.2 | −97.6 | −2.4 | −44.3 | 2.3 | 62.5 |
CUM 4 | −37.0 | --- | −50.5 | --- | −56.9 | --- | −86.6 | --- | 15.7 | --- | −43.1 |
SFC | −6.4 | −49.2 | −8.2 | −2.7 | −22.8 | −14.2 | −26.8 | −2.4 | 6.6 | 2.3 | 11.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, S.B.; Herdies, D.L.; Souza, D.O.d. Extreme Precipitation Events on the East Coast of Brazil’s Northeast: Numerical and Diagnostic Analysis. Water 2022, 14, 3135. https://doi.org/10.3390/w14193135
Costa SB, Herdies DL, Souza DOd. Extreme Precipitation Events on the East Coast of Brazil’s Northeast: Numerical and Diagnostic Analysis. Water. 2022; 14(19):3135. https://doi.org/10.3390/w14193135
Chicago/Turabian StyleCosta, Saulo Barros, Dirceu Luís Herdies, and Diego Oliveira de Souza. 2022. "Extreme Precipitation Events on the East Coast of Brazil’s Northeast: Numerical and Diagnostic Analysis" Water 14, no. 19: 3135. https://doi.org/10.3390/w14193135
APA StyleCosta, S. B., Herdies, D. L., & Souza, D. O. d. (2022). Extreme Precipitation Events on the East Coast of Brazil’s Northeast: Numerical and Diagnostic Analysis. Water, 14(19), 3135. https://doi.org/10.3390/w14193135