Variability of Carbon Export in the Lower Mississippi River during an Extreme Cold and Warm Year
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. River Discharge and Ambient Conditions
3.2. Seasonal Trend of DIC and DOC Concentrations
Sample Date | DIC mg L−1 | DOC mg L−1 | NO3 + NO2 mg L−1 | Q m3 s−1 |
---|---|---|---|---|
15 January 2021 | 18.8 | 9.58 | 0.98 | 19,708.53 |
12 February 2021 | 20.1 | 12.4 | 1.06 | 18,009.51 |
26 February 2021 | 22.3 | 12.5 | 1.09 | 14,186.74 |
03 March 2021 | 21.1 | 12 | 1.04 | 16,395.45 |
07 March 2021 | 18.5 | 13.1 | 0.92 | 20,048.33 |
19 March 2021 | 21.4 | 8 | 1.11 | 25,570.11 |
20 April 2021 | 25.3 | 5.58 | 1.15 | 30,299.03 |
14 May 2021 | 24.7 | 7.06 | 1.16 | 23,587.93 |
16 June 2021 | 25.3 | 7.69 | 1.37 | 20,416.45 |
29 June 2021 | 29.3 | 11.1 | 0.93 | 16,083.97 |
16 July 2021 | 21.4 | 13 | 1.37 | 17,867.93 |
28 July 2021 | 25.36 | 8.97 | 1.09 | 18,547.53 |
14 August 2021 | 32.2 | 8.46 | 0.7 | 9259.61 |
27 August 2021 | 29.3 | 4.81 | 0.37 | 9882.58 |
24 September 2021 | 29.1 | 8.5 | 0.56 | 7928.72 |
15 October 2021 | 30.76 | 10.3 | 0.6 | 7475.65 |
12 November 2021 | 28.83 | 13.01 | 1.12 | 11,468.32 |
13 December 2021 | 36.4 | 8.26 | 1.24 | 6937.63 |
3.3. Seasonal Variation in Partial Pressure and Outgassing of CO2
3.4. Mass Export of DIC and DOC
Season | DIC Tg | DOC Tg | FCO2 g C m−2 d−1 | Q km3 |
---|---|---|---|---|
Winter | 2.88 (22.8%) | 1.56 (34.5%) | 1.62 (16.2%) | 143.1 (28.6%) |
Spring | 4.78 (37.9%) | 1.31 (28.9%) | 3.43 (35.9%) | 186.4 (37.3%) |
Summer | 2.68 (21.2%) | 0.91 (20.1%) | 2.72 (27.7%) | 99.5 (19.9%) |
Fall | 2.28 (18.1%) | 0.75 (16.5%) | 2.03 (20.3%) | 71.0 (14.2%) |
Total | 12.61 | 4.54 | 864.6 | 500 |
Study Period | Q | DOC | DIC | pCO2 | FCO2 | |||
---|---|---|---|---|---|---|---|---|
Km3 yr−1 | Tg C yr−1 | µmol L−1 | Tg C yr−1 | µmol L−1 | µatm | g C m−2 yr−1 | Reference | |
2021 | 500 | 4.54 | 806 ± 218 | 12.61 | 2129 ± 419 | 1703 ± 646 | 864.6 | This Study |
2015–2018 | 548 | 3.95 | 607 ± 158 | 12.25 | 1782 ± 585 | 1500 ± 743 | 654 | [39] |
2009–2010 | 550 | 1.6 | 296 ± 54 | - | - | - | - | [50] |
2006–2008 | 457 | 1.88 | 307 ± 28 | 13.6 | 2421 ± 480 | - | - | [40] |
2000–2001 | 374 | 1.51 | 375 ± 42 | - | - | 1362 ± 267 | 1077 ± 407 | [48] |
1971–2000 | - | 2.6 ± 0.4 | - | 18.8 ± 3.4 | - | - | - | [33] * |
4. Discussion
Phyco | Chl a | cDOM | NH4 | N | T | SC | DO | pH | pCO2 | DIC | DOC | Q | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phyco | 1.00 | ||||||||||||
Chl a | 0.94 | 1.00 | |||||||||||
cDOM | 0.69 | 0.63 | 1.00 | ||||||||||
NH4 | 0.67 | 0.62 | 0.99 | 1.00 | |||||||||
N | 0.79 | 0.70 | 0.58 | 0.63 | 1.00 | ||||||||
T | - | −0.59 | - | - | - | 1.00 | |||||||
SC | −0.57 | −0.51 | - | - | −0.54 | - | 1.00 | ||||||
DO | - | 0.57 | - | - | - | −0.97 | - | 1.00 | |||||
pH | - | - | - | - | - | - | - | - | 1.00 | ||||
pCO2 | - | - | - | - | - | 0.90 | - | −0.95 | −0.15 | 1.00 | |||
DIC | −0.78 | −0.77 | −0.48 | −0.48 | −0.71 | 0.54 | 0.86 | −0.48 | −0.09 | - | 1.00 | ||
DOC | 0.49 | 0.55 | - | - | - | - | - | - | 0.05 | −0.49 | - | 1.00 | |
Q | - | - | - | - | - | - | -0.91 | - | 0.20 | - | −0.66 | - | 1.00 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–450. [Google Scholar] [CrossRef]
- Li, M.; Peng, C.; Wang, M.; Xue, W.; Zhang, K.; Wang, K.; Shi, G.; Zhu, Q. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecol. Indic. 2017, 80, 40–51. [Google Scholar] [CrossRef]
- Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci. 2009, 2, 598–600. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef]
- Meybeck, M.; Vörösmarty, C. Global transfer of carbon by rivers. Glob. Chang. Newsl. 1999, 37, 18–19. [Google Scholar]
- Meybeck, M. Concentrations of river waters in major elements and contributions in solution awx oceans. Rev. Geol. Dyn. Geogr. Phys. 1979, 21, 215–246. [Google Scholar]
- Ludwig, W.; Amiotte Suchet, P.; Probst, J.L. River discharges of carbon to the world’s oceans: Determining local inputs of alkalinity and of dissolved and particulate organic carbon. Sci. Terre Des. Planètes Comptes Rendus L’académie Des. Sci. 1996, 323, 1007–1014. [Google Scholar]
- Huang, T.H.; Fu, Y.H.; Pan, P.Y.; Chen, C.T.A. Fluvial carbon fluxes in tropical rivers. Curr. Opin. Environ. Sustain. 2012, 4, 162–169. [Google Scholar] [CrossRef]
- Hedges, J.; Keil, R.G.; Benner, R. What happens to terrestrial organic matter in the ocean? Org. Geochem. 1997, 27, 195–212. [Google Scholar] [CrossRef]
- Jiang, L.-Q.; Carter, B.R.; Feely, R.A.; Lauvset, S.K.; Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Sci. Rep. 2019, 9, 18624. [Google Scholar] [CrossRef] [PubMed]
- Drake, T.W.; Raymond, P.A.; Spencer, R.G. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. 2018, 3, 132–142. [Google Scholar] [CrossRef]
- Hope, D.; Billett, M.F.; Cresser, M.S. A review of the export of carbon in river water: Fluxes and processes. Environ. Pollut. 1994, 84, 301–324. [Google Scholar] [CrossRef]
- Bianchi, T.S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proc. Natl. Acad. Sci. USA 2011, 108, 19473–19481. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.A.; Bauer, J.E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Org. Geochem. 2001, 32, 469–485. [Google Scholar] [CrossRef]
- Chaplot, V.; Mutema, M. Sources and main controls of dissolved organic and inorganic carbon in river basins: A worldwide meta-analysis. J. Hydrol. 2021, 603, 126941. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Filley, T.; Dria, K.; Hatcher, P.G. Temporal variability in sources of dissolved organic carbon in the lower Mississippi river. Geochim. Cosmochim. Acta 2004, 68, 959–967. [Google Scholar] [CrossRef]
- Lohrenz, S.E.; Hopkinson, C.S.; Yang, J.; Tao, B.; Pan, S.; He, R.; Ren, W.; Tian, H.; Cai, W.-J.; Huang, W.-J. Century-long increasing trend and variability of dissolved organic carbon export from the Mississippi River basin driven by natural and anthropogenic forcing. Glob. Biogeochem. Cycles 2016, 30, 1288–1299. [Google Scholar] [CrossRef]
- Meybeck, M. Riverine transport of atmospheric carbon: Sources, global typology and budget. Water Air Soil Pollut. 1993, 70, 443–463. [Google Scholar] [CrossRef]
- Lauerwald, R.; Laruelle, G.G.; Hartmann, J.; Ciais, P.; Regnier, P.A. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 2015, 29, 534–554. [Google Scholar] [CrossRef]
- Richey, J.E.; Melack, J.M.; Aufdenkampe, A.K.; Ballester, V.M.; Hess, L.L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 2002, 416, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; MacKenzie, F.T.; Gruber, N.; Janssens, I.; Laruelle, G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Richey, J.E. Pathways of Atmospheric CO~2 through Fluvial Systems. Scope-Sci. Comm. Probl. Environ. Int. Counc. Sci. Unions 2004, 62, 329–340. [Google Scholar]
- Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Borges, A.V. Large overestimation of pCO 2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 2015, 12, 67–78. [Google Scholar]
- Duvert, C.; Butman, D.E.; Marx, A.; Ribolzi, O.; Hutley, L.B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 2018, 11, 813–818. [Google Scholar] [CrossRef]
- Ran, L.; Lu, X.X.; Richey, J.E.; Sun, H.; Han, J.; Yu, R.; Liao, S.; Yi, Q. Long-term spatial and temporal variation of CO2 partial pressure in the Yellow River, China. Biogeosciences 2015, 12, 921–932. [Google Scholar] [CrossRef]
- Zeng, F.W.; Masiello, C.A. Sources of CO2 evasion from two subtropical rivers in North America. Biogeochemistry 2010, 100, 211–225. [Google Scholar] [CrossRef]
- Butman, D.; Raymond, P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 2011, 4, 839–842. [Google Scholar] [CrossRef]
- Eccles, R.; Zhang, H.; Hamilton, D. A review of the effects of climate change on riverine flooding in subtropical and tropical regions. J. Water Clim. Chang. 2019, 10, 687–707. [Google Scholar] [CrossRef]
- Cherchi, A.; Ambrizzi, T.; Behera, S.; Freitas, A.C.V.; Morioka, Y.; Zhou, T. The Response of Subtropical Highs to Climate Change. Curr. Clim. Chang. Rep. 2018, 4, 371–382. [Google Scholar] [CrossRef]
- Osland, M.J.; Stevens, P.W.; Lamont, M.M.; Brusca, R.C.; Hart, K.M.; Waddle, J.H.; Langtimm, C.A.; Williams, C.M.; Seminoff, J.A. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Glob. Chang. Biol. 2021, 27, 3009–3034. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Kucharik, C.J.; Twine, T.E.; Coe, M.T.; Donner, S.D. Land use, land cover, and climate change across the Mississippi Basin: Impacts on selected land and water resources. Ecosyst. Land Use Chang. 2006, 15, 249–261. [Google Scholar] [CrossRef]
- Tian, H.; Ren, W.; Yang, J.; Tao, B.; Cai, W.J.; Lohrenz, S.E.; Hopkinson, C.S.; Liu, M.; Yang, Q.; Lu, C.; et al. Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin. Glob. Biogeochem. Cycles 2015, 29, 1333–1347. [Google Scholar] [CrossRef]
- Tavakol, A.; Rahmani, V.; Harrington, J. Evaluation of hot temperature extremes and heat waves in the Mississippi River Basin. Atmospheric Res. 2020, 239, 104907. [Google Scholar] [CrossRef]
- Tang, C.; Dennis, R.; Cooter, E. Water Temperature Changes in the Mississippi River Basin; Internal. Presentation, RTP, NC; Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Raymond, P.A.; Oh, N.-H.; Turner, R.E.; Broussard, W. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 2008, 451, 449–452. [Google Scholar] [CrossRef]
- Munoz, S.E.; Giosan, L.; Therrell, M.D.; Remo, J.W.F.; Shen, Z.; Sullivan, R.M.; Wiman, C.; O’Donnell, M.; Donnelly, J.P. Climatic control of Mississippi River flood hazard amplified by river engineering. Nature 2018, 556, 95–98. [Google Scholar] [CrossRef]
- Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W.; Lohrenz, S. Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO2. Geophys. Res. Lett. 2014, 41, 4978–4986. [Google Scholar] [CrossRef]
- Reiman, J.; Xu, Y.J. Dissolved carbon export and CO2 outgassing from the lower Mississippi River—Implications of future river carbon fluxes. J. Hydrol. 2019, 578, 124093. [Google Scholar] [CrossRef]
- Cai, Y.; Guo, L.; Wang, X.; Aiken, G. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006–2008. J. Geophys. Res. Biogeosci. 2015, 120, 2273–2288. [Google Scholar] [CrossRef]
- Joshi, S.; Xu, Y.J. Assessment of Suspended Sand Availability under Different Flow Conditions of the Lowermost Mississippi River at Tarbert Landing during 1973–2013. Water 2015, 7, 7022–7044. [Google Scholar] [CrossRef]
- Rosen, T.; Xu, Y.J. Estimation of sedimentation rates in the distributary basin of the Mississippi River, the Atchafalaya River Basin, USA. Hydrol. Res. 2015, 46, 244–257. [Google Scholar] [CrossRef]
- Vaughn, D.R.; Kellerman, A.M.; Wickland, K.P.; Striegl, R.G.; Podgorski, D.C.; Hawkings, J.R.; Nienhuis, J.H.; Dornblaser, M.M.; Spencer, R.G. Anthropogenic landcover impacts fluvial dissolved organic matter composition in the Upper Mississippi River Basin. Biogeochemistry 2021, 1–25. [Google Scholar] [CrossRef]
- Wohl, E.; Hall, R.O., Jr.; Lininger, K.B.; Sutfin, N.A.; Walters, D.M. Carbon dynamics of river corridors and the effects of human alterations. Ecol. Monogr. 2017, 87, 379–409. [Google Scholar] [CrossRef]
- Repasch, M. Unexpected Consequences of River Engineering on the Carbon Cycle. AGU Adv. 2021, 2, e2021AV000402. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.J. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology 2018, 300, 31–44. [Google Scholar] [CrossRef]
- Cai, W.-J.; Wang, Y. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 1998, 43, 657–668. [Google Scholar] [CrossRef]
- Dubois, K.D.; Lee, D.N.; Veizer, J. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. J. Geophys. Res. Biogeosci. 2010, 115, G02018. [Google Scholar] [CrossRef]
- Weiss, R. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 1974, 2, 203–215. [Google Scholar] [CrossRef]
- Shen, Y.; Fichot, C.; Benner, R. Floodplain influence on dissolved organic matter composition and export from the Mississippi-Atchafalaya River system to the Gulf of Mexico. Limnol. Oceanogr. 2012, 57, 1149–1160. [Google Scholar] [CrossRef]
- Soria-Reinoso, I.; Alcocer, J.; Sánchez-Carrillo, S.; García-Oliva, F.; Cuevas-Lara, D.; Cortés-Guzmán, D.; Oseguera, L.A. The Seasonal Dynamics of Organic and Inorganic Carbon along the Tropical Usumacinta River Basin (Mexico). Water 2022, 14, 2703. [Google Scholar] [CrossRef]
- Dagg, M.J.; Bianchi, T.S.; Breed, G.A.; Cai, W.-J.; Duan, S.; Liu, H.; McKee, B.A.; Powell, R.T.; Stewart, C.M. Biogeochemical characteristics of the lower Mississippi River, USA, during June 2003. Estuaries 2005, 28, 664–674. [Google Scholar] [CrossRef]
- Reiman, J.H.; Xu, Y.J. Diel Variability of pCO2 and CO2 Outgassing from the Lower Mississippi River: Implications for Riverine CO2 Outgassing Estimation. Water 2018, 11, 43. [Google Scholar] [CrossRef]
- Turner, R.E.; Rabalais, N.N.; Alexander, R.B.; McIsaac, G.; Howarth, R.W. Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico. Estuaries Coasts 2007, 30, 773–790. [Google Scholar] [CrossRef]
- Goulder, R. Seasonal variation in heterotrophic activity and population density of planktonic bacteria in a clean river. J. Ecol. 1980, 68, 349–363. [Google Scholar] [CrossRef]
- Servais, P.; Garnier, J. Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France). Microb. Ecol. 1993, 25, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Voss, B.M.; Wickland, K.P.; Aiken, G.R.; Striegl, R.G. Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin. Glob. Biogeochem. Cycles 2017, 31, 1271–1288. [Google Scholar] [CrossRef]
- Cai, Y.; You, C.-F.; Wu, S.-F.; Cai, W.-J.; Guo, L. Seasonal variations in strontium and carbon isotope systematics in the Lower Mississippi River: Implications for chemical weathering. Chem. Geol. 2020, 553, 119810. [Google Scholar] [CrossRef]
- Calabrese, S.; Parolari, A.J.; Porporato, A. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering. J. Geophys. Res. Earth Surf. 2017, 122, 2016–2032. [Google Scholar] [CrossRef]
- Ford, T.W.; Chen, L.; Schoof, J.T. Variability and Transitions in Precipitation Extremes in the Midwest United States. J. Hydrometeorol. 2021, 22, 533–545. [Google Scholar] [CrossRef]
Season | Temp °C | DO mg L−1 | pH | Turbidity NTU | cDOM AFU | NH4 AFU | Chl-a AFU | Phyco AFU |
---|---|---|---|---|---|---|---|---|
Winter | 6.82 ± 3.18 | 11.43 ± 1.31 | 8.06 ± 0.7 | 92.85 ± 36.55 | 59.31 ± 5.13 | 83.75 ± 7.24 | 230.62 ± 45.02 | 127.32 ± 29.08 |
Spring | 22.6 ± 4.92 | 6.81 ± 0.73 | 7.89 ± 0.22 | 41.6 ± 17.54 | 59.56 ± 2.62 | 83.55 ± 3.59 | 148.85 ± 17.05 | 77.35 ± 27.45 |
Summer | 29.0 ± 0.95 | 6.07 ± 0.39 | 7.79 ± 0.09 | 85.32 ± 77.91 | 61.47 ± 12.04 | 88.64 ± 19.32 | 175.95 ± 55.08 | 97.05 ± 61.37 |
Fall | 19.7 ± 7.09 | 8.21 ± 1.56 | 7.84 ± 0.06 | 30.37 ± 20.04 | 54.97 ± 4.67 | 76.41 ± 6.49 | 130.73 ± 24.05 | 54.38 ± 19.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potter, L.; Xu, Y.J. Variability of Carbon Export in the Lower Mississippi River during an Extreme Cold and Warm Year. Water 2022, 14, 3044. https://doi.org/10.3390/w14193044
Potter L, Xu YJ. Variability of Carbon Export in the Lower Mississippi River during an Extreme Cold and Warm Year. Water. 2022; 14(19):3044. https://doi.org/10.3390/w14193044
Chicago/Turabian StylePotter, Lee, and Y. Jun Xu. 2022. "Variability of Carbon Export in the Lower Mississippi River during an Extreme Cold and Warm Year" Water 14, no. 19: 3044. https://doi.org/10.3390/w14193044
APA StylePotter, L., & Xu, Y. J. (2022). Variability of Carbon Export in the Lower Mississippi River during an Extreme Cold and Warm Year. Water, 14(19), 3044. https://doi.org/10.3390/w14193044