Study on Hydrochemical Characteristics and Formation Process of Antu Mineral Water in Changbai Mountain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Testing
2.3. Age of Water
2.4. Water Interaction Elevation
2.5. Water Interaction Ratio
3. Results and Discussion
3.1. Hydrochemical Characteristics of Mineral Water
3.2. Formation Process of Solutes in Mineral Water
- Olivine:
- Pyroxene:
- Potash feldspar:
- Albite:
- Anorthite:
3.3. Age of Mineral Water
3.4. Interaction of Mineral and Surface Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medici, G.; Bajak, P.; West, L.J.; Chapman, P.J.; Banwart, S.A. DOC and nitrate fluxes from farmland; impact on a dolostone aquifer KCZ. J. Hydrol. 2021, 595, 125658. [Google Scholar] [CrossRef]
- Qin, C.; Li, S.L.; Waldron, S.; Yue, F.J.; Wang, Z.J.; Zhong, J.; Ding, H.; Liu, C.Q. High-frequency monitoring reveals how hydrochemistry and dissolved carbon respond to rainstorms at a karstic critical zone, Southwestern China. Sci. Total Environ. 2020, 714, 136833. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Postma, D. Geochemistry, groundwater and pollution. In Balkema; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Fuoco, I.; de Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef]
- Fuoco, I.; Marini, L.; de Rosa, R.; Figoli, A.; Gabriele, B.; Apollaro, C. Use of reaction path modelling to investigate the evolution of water chemistry in shallow to deep crystalline aquifers with a special focus on fluoride. Sci. Total Environ. 2022, 830, 154566. [Google Scholar] [CrossRef] [PubMed]
- Kløve, B.; Ala-aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 7, 770–781. [Google Scholar] [CrossRef]
- Shi, X.D.; Kang, X.B.; Xu, M.; Deng, H.K. Hydrochemical characteristics and evolution laws of karst grounderwater in the slope zone of the canyon area, Sichuan-Yunnan Plateau. Acta Geol. Sin. 2019, 93, 2975–2984. [Google Scholar]
- Amiri, V.; Kamrani, S.; Ahmad, A.; Bhattacharya, P.; Mansoori, J. Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd province, central plateau of Iran. Environ. Sci. Pollut. Res. 2021, 28, 1108–1130. [Google Scholar]
- Tang, C.L.; Zheng, X.Q.; Liang, Y.P. Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in Longzici Spring Catchment. Environ. Sci. 2020, 41, 2087–2209. [Google Scholar]
- Xiong, G.Y.; Fu, T.F.; Han, J.B.; Chen, G.Q.; Xu, X.Y.; Xu, X.L.; Liu, G.Q.; Liu, W.Q. Hydrogeochemical and Isotopic Characteristics of Groundwater in Dagu River Basin. Adv. Mar. Sci. 2019, 37, 626–637. [Google Scholar]
- Amiri, V.; Li, P.; Bhattacharya, P.; Nakhaei, M. Mercury pollution in the coastal Urmia aquifer in northwestern Iran: Potential sources, mobility, and toxicity. Environ. Sci. Pollut. Res. 2021, 28, 17546–17562. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.K.; Zhao, Y.Q.; Han, S.B.; Liu, Y.Q.; Zhang, T. Hydrochemical Characteristics and Possible Controls of Groundwater in the Xialatuo Basin Section of the Xianshui River. Environ. Sci. 2019, 40, 1236–1244. [Google Scholar]
- Wei, X.; Zhou, J.L.; Nai, W.H.; Zeng, Y.Y.; Fan, W.; Li, B. Hydrochemical Characteristics and Evolution of Groundwater in the Kashgar Delta Area in Xinjiang. Environ. Sci. 2019, 40, 4042–4051. [Google Scholar]
- Sohrabi, N.; Kalantari, N.; Amiri, V.; Saha, N.; Berndtsson, R.; Bhattacharya, P.; Ahmad, A. A probabilistic-deterministic analysis of human health risk related to the exposure to potentially toxic elements in groundwater of Urmia coastal aquifer (NW of Iran) with a special focus on arsenic speciation and temporal variation. Stoch. Environ. Res. Risk Assess. 2020, 35, 1509–1528. [Google Scholar] [CrossRef]
- Getnet, T.B.; Zelalem, L.A.; Alebachew, T.K.; Mohammed, S.M.; Gashaw, W. Hydrogeochemical and isotopic signatures of groundwater in the Andasa watershed, Upper Blue Nile basin, Northwestern Ethiopia. J. Afr. Earth Sci. 2019, 160, 103617. [Google Scholar]
- Locsey, K.L.; Grigorescu, M.; Cox, M.E. Water–Rock interactions: An investigation of the relationships between mineralogy and groundwater composition and flow in a subtropical basalt aquifer. Aquat. Geochem. 2012, 1, 45–75. [Google Scholar] [CrossRef]
- Vaughn, B.H.; Fountain, A.G. Stable isotopes and electrical conductivity as keys to understanding water pathways and storage in South Cascade Glacier, Washington, USA. Ann. Glaciol. 2005, 40, 107–112. [Google Scholar] [CrossRef]
- Wang, Y.S.; Cheng, X.X.; Zhang, M.N.; Qi, X.F. Hydrochemical characteristics and formation mechanisms of Malian River in Yellow River basin during dry season. Environ. Chem. 2018, 37, 164–172. [Google Scholar]
- Liu, S.T.; Zhang, D.; Li, Y.H.; Yang, J.M.; Zhou, S.; Wang, Y.T.; Huang, X.Y.; Zhang, Z.Y.; Yang, W.; Jia, B.J. Water Sources and Factors Controlling on Hydro-chemical Compositions in the Yiluo River Basin. Environ. Sci. 2020, 41, 1184–1196. [Google Scholar]
- Zhang, Y.; Su, C.L.; Ma, Y.H.; Liu, W.J. Indicators of Groundwater Evolution Processes Based on Hydrochemistry and Environmental Isotopes: A Case Study of the Dongyuan Drinking Water Source Area in Ji’nan City. Environ. Sci. 2019, 40, 2667–2674. [Google Scholar]
- Su, X.S.; Gao, R.M.; Yuan, W.Z.; Lu, S.; Su, D.; Zhang, L.H.; Meng, X.F.; Zuo, E.D. Research on River Recharge Based on Environmental Isotope Technology:A Case Study of Huangjia Riverside Well Field in Shenyang City. J. Jilin Univ. (Earth Sci. Ed.) 2019, 49, 763–773. [Google Scholar]
- Han, J.B.; Xu, J.X.; Xu, K.; Zhong, Y.; Qin, X.W.; Ma, H.Z. he exchange relationship of surface water-groundwater and uranium flux in the Gas Hure Salt Lake of northwest Qaidam Basin, China. J. Lake Sci. 2019, 31, 1738–1748. [Google Scholar]
- Kong, X.L.; Wang, S.Q.; Ding, F.; Liang, Y.H. Source of Nitrate in Surface Water and Shallow Groundwater Around Baiyangdian Lake Area Based on Hydrochemical and Stable Isotopes. Environ. Sci. 2018, 39, 2624–2631. [Google Scholar]
- Wen, G.C.; Wang, W.K.; Duan, L.; Gu, X.F.; Li, Y.M.; Zhao, J.H. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope. Arid Land Geogr. 2018, 41, 734–743. [Google Scholar]
- Sun, C.J.; Chen, W. Relationship between Groundwater and Surface Water Based on Environmental Isotope and Hydrochemistry in Upperstream of the Haihe River Basin. Sci. Geogr. Sin. 2018, 38, 790–799. [Google Scholar]
- Zhao, H.; Meng, Y.; Dong, W.H.; Lv, Y.; Wu, X.C. Hydrochemistry and Stable Isotopes Characteristics of Water within Naoli River Basin. Yellow River 2017, 39, 73–78. [Google Scholar]
- Yan, B.Z.; Xiao, C.L.; Liang, X.J.; Wei, R.C.; Wu, S.L. Characteristics and genesis of mineral water from Changbai Mountain, Northeast China. Environ. Earth Sci. 2015, 7, 4819–4829. [Google Scholar] [CrossRef]
- Yan, B.Z.; Xiao, C.L.; Liang, X.J.; Wu, S.L. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China. Environ. Geochem. Health 2016, 38, 291–307. [Google Scholar] [CrossRef]
- Liang, X.J.; Tian, H.; Xiao, C.L.; Li, M.Q.; Sun, Y.; Li, Y.X. Recharge of natural mineral water Jingyu County, northeastern China. E3S Web Conf. 2019, 98, 1032. [Google Scholar] [CrossRef]
- Xiao, C.L.; Yuan, Y.J.; Liang, X.J.; Yang, W.F.; Sun, Y. Sources of metasilicate in mineral water of Jingyu County, northeastern China. E3S Web Conf. 2019, 98, 1052. [Google Scholar] [CrossRef]
- Liang, X.J.; Li, S.; Li, Y.X.; Wu, S.L.; Xiao, R.; Xiao, C.L. Experimental study of evolution of aqueous SiO2 in the mineral water in basalt beds of Jingyu County, China. Procedia Earth Planet. Sci. 2013, 7, 500–503. [Google Scholar]
- Yan, B.Z.; Xiao, C.L.; Liang, X.J.; Wu, S.L. Influences of pH and CO2 on the formation of Metasilicate mineral water in Changbai Mountain, Northeast China. Appl. Water Sci. 2017, 7, 1657–1667. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, X.J.; Xiao, C.L. The Hydrogeochemical Characteristic of Mineral Water Associated with Water-rock Interaction in Jingyu County, China. Procedia Earth Planet. Sci. 2017, 17, 726–729. [Google Scholar] [CrossRef]
- Liu, T. Study on the Sustainable Use of Natural Spring Water in the Basalt Area of Jingyu County. Master’s Thesis, Jilin University, Changchun, China, 2015. [Google Scholar]
- Lin, L. The Research on the Genesis and the Exploitation Control Scheme of the Mineral Spring Water Resource in the Changbai Mountain District. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Gao, Y. Research on the Recharge Conditions and Formation Mechanism of Mineral Water in Fusong County. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Zhang, Z.Z. Study on the Carrying Capacity and Sustainable Utilization of Water Resources in Fusong County. Master’s Thesis, Jilin University, Changchun, China, 2016. [Google Scholar]
- Tao, Y. Study on the Division of Natural Mineral Drinking Water Source Protection Areas in Fusong of Changbai Mountain in Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2013. [Google Scholar]
- Gao, Y.; Bian, J.M.; Song, C.; Cong, L. Response of Mineral Water Resources to Precipitation Change Based on Wavelet Analysis in Fusong County. J. China Hydrol. 2016, 36, 35–40. [Google Scholar]
- Ma, Y.X.; Bian, J.M.; Sun, X.Q.; Wu, J.J. Hydrochemical Characteristics and Health Evaluation of Natural Mineral Water in Fusong County, Jilin Province. J. Jilin Agric. Univ. (China). Available online: https://kns.cnki.net/kcms/detail/detail.aspxdbcode=CAPJ&dbname=CAPJLAST&filename=JLNY20190704001&v=tErk7cedzElKukTN5Mc6E76dKr-mQw7rw29E%25mmd2B6wkRKdE4R8cak3OAkxnql1Sfzep (accessed on 8 July 2019).
- Apollaro, C.; di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignano, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef]
- Aksever, F. Hydrogeochemical characterization and water quality assessment of springs in the Emirdağ (Afyonkarahisar) basin, Turkey. Arab. J. Geosci. 2019, 12, 780. [Google Scholar] [CrossRef]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- Amiri, V.; Bhattacharya, P.; Nakhaei, M. The hydrogeochemical evaluation of groundwater resources and their suitability for agricultural and industrial uses in an arid area of Iran. Groundw. Sustain. Dev. 2021, 12, 100527. [Google Scholar] [CrossRef]
- Sohrabi, N.; Kalantari, N.; Amiri, V.; Nakhaei, M. Assessing the chemical behavior and spatial distribution of yttrium and rare earth elements (YREEs) in a coastal aquifer adjacent to the Urmia Hypersaline Lake, NW Iran. Environ. Sci. Pollut. Res. 2017, 24, 20502–20520. [Google Scholar] [CrossRef]
- Amiri, V.; Berndtsson, R. Fluoride occurrence and human health risk from groundwater use at the west coast of Urmia Lake, Iran. Arab. J. Geosci. 2020, 13, 921. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Wang, W.F.; Liu, S.Q.; Chen, J.S. Relationship of recharge runoff and drainage for the mineral water in the Changbai Mountain. J. Hohai Univ. (Nat. Sci.) 2019, 47, 108–113. [Google Scholar]
- Sun, X.Q.; Bian, J.M.; Zhang, C.P.; Wang, Y.; Wan, H.L.; Jia, Z. Hydrochemistry Characteristics and Water Quality Assessment for Irrigation alongthe Second Songhua River in the South of the Songnen Plain, Northeast China. Pol. J. Environ. Stud. 2020, 29, 371–395. [Google Scholar]
- Wang, F.S. The law of O and Histopic Concentration Field on the Time-space Distribution and Environmental Effect of Atomspheric Water in Jilin Province. Jilin Geol. 1997, 16, 52–57. [Google Scholar]
- Amiri, V.; Nakhaei, M.; Lak, R.; Kholghi, M. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environ. Sci. Pollut. Res. 2016, 23, 16738–16760. [Google Scholar] [CrossRef] [PubMed]
- Amiri, V.; Nakhaei, M.; Lak, R. Using radon-222 and radium-226 isotopes to deduce the functioning of a coastal aquifer adjacent to a hypersaline lake in NW Iran. J. Asian Earth Sci. 2017, 147, 128–147. [Google Scholar] [CrossRef]
- Li, Y.H.; Bian, J.M.; Li, J.L.; Ma, Y.X.; Auguiano, J.H.H. Hydrochemistry and stable isotope indication of natural mineral water in Changbai Mountain, China. J. Hydrol. Reg. Stud. 2022, 40, 101047. [Google Scholar] [CrossRef]
Parameter | Unit | Min | Max | Mean | Sd | Cv |
---|---|---|---|---|---|---|
K+ | mg/L | 1.56 | 3.30 | 2.63 | 0.49 | 0.19 |
Na+ | mg/L | 4.91 | 10.44 | 7.94 | 1.85 | 0.23 |
Ca2+ | mg/L | 4.99 | 12.20 | 7.07 | 2.23 | 0.31 |
Mg2+ | mg/L | 2.22 | 5.41 | 3.95 | 0.94 | 0.24 |
HCO3− | mg/L | 43.10 | 75.82 | 55.88 | 7.75 | 0.14 |
Cl− | mg/L | 0.55 | 3.35 | 1.82 | 0.97 | 0.54 |
SO42− | mg/L | 2.18 | 7.66 | 4.08 | 1.72 | 0.42 |
TDS | mg/L | 104.28 | 154.12 | 123.08 | 12.26 | 0.10 |
H2SiO3 | mg/L | 35.02 | 57.69 | 50.78 | 6.50 | 0.13 |
pH | - | 7.04 | 7.80 | 7.24 | 0.21 | 0.03 |
Mineral Water Number | Potash Feldspar | Albite | Anorthite | Pyroxene |
---|---|---|---|---|
Average SI of mineral water | 0.02 | −1.83 | −5.73 | −5.61 |
Water Types | Time & Quantity | δDV-SMOW/‰ | δ18OV-SMOW/‰ | ||||
---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | Min | Mean | ||
Spring | April 2019 | −98.36 | −102.45 | −100.57 | −13.95 | −14.95 | −14.47 |
September 2019 | −95.83 | −100.53 | −98.59 | −13.36 | −14.17 | −13.83 | |
Surface water | April 2019 | −95.60 | −95.60 | −95.60 | −13.53 | −13.53 | −13.53 |
September 2019 | −94.41 | −94.41 | −94.41 | −13.10 | −13.10 | −13.10 | |
Precipitation | September 2019 | −59.35 | −59.35 | −59.35 | −9.33 | −9.33 | −9.33 |
Water Types | Sampling Height/m | Recharge Height/m | Tritium Concentration/TU | Age/a |
---|---|---|---|---|
Mineral water | 663 | 1801 | 1.9 | 57.2 |
693 | 1835 | 5.4 | 38.4 | |
712 | 1824 | 8.2 | 30.9 | |
1143 | 2393 | 9.8 | 27.7 | |
956 | 1855 | 9.2 | 28.9 | |
925 | 1893 | 7.4 | 32.8 | |
812 | 2110 | 5.6 | 37.8 | |
712 | 1824 | 6.1 | 36.2 | |
Surface water | 666 | 1398 | 8.7 | 29.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Li, Y.; Ma, Y.; Li, J.; Yu, Y.; Sun, W. Study on Hydrochemical Characteristics and Formation Process of Antu Mineral Water in Changbai Mountain, China. Water 2022, 14, 2770. https://doi.org/10.3390/w14182770
Bian J, Li Y, Ma Y, Li J, Yu Y, Sun W. Study on Hydrochemical Characteristics and Formation Process of Antu Mineral Water in Changbai Mountain, China. Water. 2022; 14(18):2770. https://doi.org/10.3390/w14182770
Chicago/Turabian StyleBian, Jianmin, Yihan Li, Yuxi Ma, Jialin Li, Yexiang Yu, and Wenhao Sun. 2022. "Study on Hydrochemical Characteristics and Formation Process of Antu Mineral Water in Changbai Mountain, China" Water 14, no. 18: 2770. https://doi.org/10.3390/w14182770