Water Footprint of Forest and Orchard Trees: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy and Inclusion Criteria
2.2. WF Approaches
3. Results
3.1. General Overview
Reference | Year | Paper Category | Tree Type | Geographic Coverage | Spatial Resolution | Temporal Resolution | WF Approach | Water Component | Phase |
---|---|---|---|---|---|---|---|---|---|
[6] | 2019 | Overview | Forest a | Global | 5 arc-min | - | WFN | Green water | Accounting, Sustainability Assessment |
[14] | 2015 | Mixed approach | Eucalyptus | Portugal | na | Yearly | LCA | Green water | Inventory, Impact Assessment |
[17] | 2014 | Case study | Forest a, rubber tree | China | 5 arc-min | Monthly | WFN | Blue water, green water | Accounting, Sustainability Assessment (blue water) |
[21] | 2011 | Overview | Pine, eucalyptus, spruce, broadleaves a | Finland | na | - | WFN | Blue water | Accounting |
[37] | 2008 | Case study | Olive | Spain | na | Yearly | WFN | Blue water, green water | Accounting |
[38] | 2010 | Mixed approach | Pine, eucalyptus, broadleaves a | Global | 5 arc-min | - | WFN | Blue water, green water | Accounting |
[39] | 2014 | Overview | Coniferous a, deciduous a | Fennoscandia b | - | - | WFN | Blue water, green water | Accounting |
[46] | 2018 | Case study | Olive | Spain | na | Yearly | WFN | Blue water, green water | Accounting |
[47] | 2022 | Case study | Oil palm | Indonesia | na | Yearly | WFN | Blue water, green water | Accounting |
[48] | 2019 | Case study | Date palm | United Arab Emirates | - | - | WFN | Blue water, green water | Accounting |
[49] | 2019 | Case study | Almond | USA | 8 km (ca. 5 arc-min) | Yearly | WFN-Nexus | Blue water | Accounting |
[50] | 2019 | Case study | Citrus | Iran | na | Yearly | WFN | Blue water, green water | Accounting |
[51] | 2009 | Case study | Lemon, orange | Italy | - | - | LCA | Blue water | Inventory |
[52] | 2019 | Case study | Olive, peach | Italy | na | - | WFN | Blue water, green water | Accounting |
[53] | 2015 | Case study | Almond, date palm, olive, orange | Tunisia | - | - | WFN | Blue water, green water | Accounting, Sustainability Assessment (blue water) |
[54] | 2021 | Case study | Lemon | Argentina | na | - | LCA | Blue water | Inventory, Impact Assessment |
[55] | 2019 | Case study | Almond | USA | na | Yearly | WFN | Blue water, green water | Accounting |
[56] | 2019 | Case study | Apple | South Africa | na | Yearly | WFN | Blue water, green water | Accounting |
[57] | 2020 | Case study | Oil palm | Indonesia | na | - | WFN-Nexus | Blue water, green water | Accounting |
[58] | 2010 | Case study | Almond | USA | na | - | LCA-Nexus | Blue water | Inventory, Impact Assessment |
[59] | 2012 | Case study | Pine, eucalyptus | Australia | 1 km (ca. 30 arc-second) | - | WFN | Green water | Accounting |
[60] | 2011 | Case study | Almond, apple, date palm, lemon, orange, oil palm, olive, peach and nectarine, pear, walnut | Global | 5 arc-min | - | WFN | Blue water, green water | Accounting |
[61] | 2020 | Mixed approach | Almond, apple, date palm, lemon, orange, oil palm, olive, peach and nectarine, pear, walnut | Global | 30 arc-min | - | WFN | Blue water | Accounting Sustainability Assessment |
[62] | 2019 | Case study | Nectarine (peach) | Italy | na | - | LCA | Blue water | Inventory, Impact Assessment |
[63] | 2015 | Case study | Oil palm | Thailand | na | - | LCA | Blue water, green water | Inventory, Impact Assessment (Blue water) |
[64] | 2016 | Case study | Lemon, orange | South Africa | na | Yearly | WFN | Blue water, green water | Accounting, Sustainability Assessment (blue water) |
[65] | 2019 | Case study | Almond, apple, olive, peach, pear, walnut | Turkey | na | - | WFN | Blue water, green water | Accounting, Sustainability Assessment (blue water) |
[66] | 2021 | Review | Forest a | East Africa | - | - | WFN-Nexus | Blue water, green water | Accounting, Sustainability Assessment |
[67] | 2016 | Case study | Olive | Italy | na | - | WFN | Blue water, green water | Accounting |
[68] | 2020 | Case study | Olive | Italy | - | Yearly | WFN | Blue water, green water | Accounting |
[69] | 2018 | Case study | Oil palm | Indonesia | na | - | WFN | Blue water, green water | Accounting |
[70] | 2019 | Case study | Oil palm | Indonesia | na | - | WFN | Blue water, green water | Accounting |
[71] | 2011 | Case study | Olive | Spain | na | Yearly | WFN | Blue water, green water | Accounting |
[72] | 2017 | Case study | Oil palm | Indonesia | - | - | WFN | Blue water, green water | Accounting |
[73] | 2017 | Case study | Coniferous a, non-coniferous a | Global | 30 arc-min | Yearly | WFN | Blue water, green water | Accounting |
[74] | 2019 | Case study | Olive | Tunisia | na | - | WFN | Blue water, green water | Accounting |
[75] | 2018 | Case study | Oil palm | Malaysia | - | - | LCA | Blue water | Inventory, Impact Assessment |
[76] | 2020 | Case study | Oil palm | Malaysia | - | - | LCA | Blue water | Inventory, Impact Assessment |
[77] | 2016 | Case study | Oil palm | Thailand | na | - | LCA | Blue water, green water | Inventory, Impact Assessment (blue water) |
[78] | 2019 | Case study | Citrus, olive | Greece | na | Yearly | WFN | Blue water, green water | Accounting |
[79] | 2016 | Overview | Forest a, orchard trees a | Global | - | - | WFN-Nexus | Blue water, green water | Accounting |
[80] | 2018 | Case study | Peach | Italy | na | - | WFN | Blue water, green water | Accounting |
[81] | 2017 | Case study | Almond, apple, lemon, olive, orange peach, pear | Greece | na | - | WFN | Blue water, green water | Accounting |
3.2. Methodological Trends
3.2.1. WF Approaches
3.2.2. Goal and Scope
3.2.3. Accounting/Inventory
3.2.4. Sustainability Assessment/Impact Assessment
3.3. WF Accounting/Inventory Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable (accessed on 4 June 2022).
- Le Blanc, D. Towards integration al last? The sustainable development goals as a network of targets. Sustain. Dev. 2015, 23, 176–187. Available online: https://www.un.org/esa/desa/papers/2015/wp141_2015.pdf (accessed on 4 June 2022). [CrossRef]
- Livingstone, D.; Smyth, B.M.; Foley, A.M.; Murray, S.M.; Lyons, G. Willow coppice in intensive agricultural applications to reduce strain on the food-energy-water nexus. Biomass Bioenergy 2021, 144, 105903. [Google Scholar] [CrossRef]
- Berger, M.; Campos, J.; Corilli, M.; Dantas, I.; Forin, S.; Kosatica, E.; Kramer, A.; Mikpsch, N.; Nouri, H.; Schlattmann, A.; et al. Advancing the water footprint into an instrument to support achieving the SDGs—Recommendations from the “Water as a Global Resources” Research Initiative (GRoW). Water Resour. Manag. 2021, 35, 1291–1298. [Google Scholar] [CrossRef]
- Báliková, K.; Cervená, T.; De Meo, I.; De Vreese, R.; Deniz, T.; El Mokaddem, A.; Kayacan, B.; Larabi, F.; Libiete, Z.; Lyubenova, M.; et al. How Do Stakeholders Working on the Forest-Water Nexus Perceive Payments for Ecosystem Services? Forests 2019, 11, 12. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef]
- Baulenas, E.; Sotirov, M. Cross-sectorial policy integration at the forest and water nexus: National level instrument choices and integration drivers in the European Union. For. Policy Econ. 2020, 118, 102247. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Water Footprint Network; Earthscan: London, UK; Enschede, The Netherlands, 2011; Available online: https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf (accessed on 10 May 2022).
- Quinteiro, P.; Ridoutt, B.G.; Arroja, L.; Dias, A.C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: A review. Int. J. Life Cycle Assess. 2018, 23, 164–180. [Google Scholar] [CrossRef]
- Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 2019, 221, 50–66. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale (accessed on 15 June 2022).
- FAO. The future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Taylor, N.J.; Gush, M.B. The Water Use of Selected Fruit Tree Orchards (Volume 1): Review of Available Knowledge; WRC REPORT NO. 1770/1/14; Water Research Commission: Pretoria, South Africa, 2014; ISBN 978-1-4312-0574-5. [Google Scholar]
- Quinteiro, P.; Dias, A.C.; Silva, M.; Ridoutt, B.G.; Arroja, L. A contribution to the environmental impact assessment of green water flows. J. Clean. Prod. 2015, 93, 318–329. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P. Monthly water stress: Spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 2014, 73, 52–62. [Google Scholar] [CrossRef]
- Nisbet, T.R.; Andreucci, M.-B.; De Vreese, R.; Högbom, L.; Kay, S.; Kelly-Quinn, M.; Leonardi, A.; Lyubenova, M.I.; Pol, P.O.; Quinteiro, P.; et al. Forest Green Infrastructure to Protect Water Quality: A Step-by-Step Guide for Payment Schemes. In Green Infrastructure and Climate Change Adaptation. Function, Implementation and Governance; Nakamura, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 105–131. Available online: https://link.springer.com/book/10.1007%2F978-981-16-6791-6 (accessed on 15 June 2022).
- Launiainen, S.; Futter, M.N.; Ellison, D.; Clarke, N.; Finér, L.; Högbom, L.; Laurén, A.; Ring, E. Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case. Ambio 2014, 43, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Rosier, P. The impact of broadleaved woodland on water resources in lowland UK: III. The results from Black Wood and Bridgets Farm compared with those from other woodland and grassland sites. Hydrol. Earth Syst Sci. 2005, 9, 614–620. [Google Scholar] [CrossRef]
- Creed, I.F.; van Noordvijk, M. (Eds.) Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities. A Global Assessment Report; World Series; International Union of Forest Research Organizations (IUFRO): Vienna, Auatria, 2018; Volume 38, 192p. [Google Scholar]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef]
- UPM. From Forest to Paper, the Story of Our Water Footprint; The Biofore Company: Switchboard, Finland, 2011; Available online: https://www.waterfootprint.org/media/downloads/UPM-2011.pdf (accessed on 17 May 2022).
- Nisbet, T. Water Use by Trees; Forest Research; Forestry Commission: London, UK, 2005; ISBN 0-85538-654-1. [Google Scholar]
- Siqueira, P.P.; Oliveria, P.T.S.; Rodrigues, D.B.B. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. J. Hydrol. Reg. Stud. 2021, 37, 100931. [Google Scholar] [CrossRef]
- Springgay, E.; Casallas, S.; Janzen, S.; Vannozzi, V. The forest-water nexus: An international perspective. Forests 2019, 10, 915. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnem, M.M.; Hoekstra, A.Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 808, 1500741. [Google Scholar] [CrossRef]
- Haida, C.; Chapagain, A.K.; Rauch, W.; Riede, M.; Scheider, K. From water footprint to climate change adaptation: Capacity development with teenagers to save water. Land Use Policy 2019, 80, 456–463. [Google Scholar] [CrossRef]
- Quinteiro, P.; Rafael, S.; Vicente, B.; Marta-Almeida, M.; Rocha, A.; Arroja, L.; Dias, A.C. Mapping green water scarcity under climate change: A case study of Portugal. Sci. Total Environ. 2019, 696, 134024. [Google Scholar] [CrossRef]
- ISO 14046; Environmental management. Water Footprint—Principles, Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2014.
- Boulay, A.M.; Drastig, K.; Amanullah, A.; Chapagain, A.; Charlon, V.; Civit, B.C.; De Camilis, C.; De Souza, M.; Hess, T.; Hoekstra, A.Y.; et al. Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecol. Indic. 2021, 124, 107391. [Google Scholar] [CrossRef]
- Kounina, A.; Margni, M.; Bayart, J.-B.; Boulay, A.-M.; Berger, M.; Bulle, C.; Frischknecht, R.; Koehler, A.; Milà i Canals, L.; Motoshita, M.; et al. Review of methods addressing freshwater use in life cycle inventory and impact assessment. Int. J. Life Cycle Assess. 2013, 18, 707–721. Available online: https://link.springer.com/article/10.1007/s11367-012-0519-3 (accessed on 23 April 2022). [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water footprint of crop production: A review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Deepa, R.; Anandhi, A.; Alhashim, R. Volumetric and impact-oriented water footprint of agricultural crops: A review. Ecol. Indic. 2012, 130, 108093. [Google Scholar] [CrossRef]
- Ma, W.; Opp, C.; Yang, D. Past, Present, and Future of Virtual Water and Water Footprint. Water 2020, 12, 3068. [Google Scholar] [CrossRef]
- Adams, R.J.; Smart, P.; Huff, A.S. Shades of grey: Guidelines for working with the grey literature in systematic reviews for management and organizational studies. Int. J. Manag. Rev. 2017, 19, 432–454. [Google Scholar] [CrossRef]
- Aldaya, M.M.; Llamas, M.R. Water Footprint Analysis for the Guadiana River Basin; Value of Water Research Report Series No. 35; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2008; Available online: https://waterfootprint.org/media/downloads/Report35-WaterFootprint-Guadiana_1.pdf (accessed on 15 April 2022).
- Van Oel, P.R.; Hoekstra, A.Y. The Green and Blue Footprint of Paper Products: Methodological Considerations and Quantifications; Value of Water Research Report Series No 46; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2010; Available online: https://waterfootprint.org/media/downloads/Report46-WaterFootprintPaper_1.pdf (accessed on 15 April 2022).
- Quinteiro, P.; Rafael, S.; Villanueva-Rey, P.; Ridoutt, B.; Lopes, M.; Arroja, L.; Dias, A.C. A characterisation model to address the environmental impacts of green water flows for water scarcity footprints. Sci. Total Environ. 2018, 626, 1210–1218. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2017, 23, 368–378. Available online: https://link.springer.com/article/10.1007/s11367-017-1333-8 (accessed on 10 June 2022). [CrossRef]
- Boulay, A.-M.; Hoekstra, A.Y.; Vionnet, S. Complementarities of Water-Focused Life Cycle Assessment and Water Footprint Assessment. Environ. Sci. Technol. 2013, 47, 11926–11927. [Google Scholar] [CrossRef]
- Pfister, S.; Boulay, A.-M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Doll, P.; et al. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”. Ecol. Indic. 2017, 72, 352–359. [Google Scholar] [CrossRef]
- Matustík, J.; Kóci, V. What is a footprint? A conceptual analysis of environmental footprint Indicators. J Clean. Prod. 2021, 285, 124833. [Google Scholar] [CrossRef]
- Pfister, S.; Ridout, B.G. Water Footprint: Pitfalls on Common Ground. Environ. Sci. Technol. 2014, 28, 4. [Google Scholar] [CrossRef] [PubMed]
- Smajgl, A.; Ward, J.; Pluschke, L. The water-food-energy Nexus—Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Perea, R.G.; Morillo, J.G.; Díaz, J.A.R.; Barrios, P.M.; Poyato, E.C. Chapter 3: Water footprint accounting for improving irrigation management in olive trees. In Water Scarcity and Sustainable Agriculture in Semiarid Environment. Tools, Strategies, and Challenges for Woody Crops; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–72. [Google Scholar] [CrossRef]
- Akram, H.; Levia, D.F.; Herrick, J.E.; Lydiasari, H.; Schütze, N. Water requirements for oil palm grown on marginal lands: A simulation approach. Agric. Water Manag. 2022, 260, 107292. [Google Scholar] [CrossRef]
- Al-Muaini, A.; Sallam, O.M.; Green, S.; Kennedy, L.; Kemp, P.; Clothier, B. The blue and grey water footprints of date production in the saline and hyper-arid deserts of United Arab Emirates. Irrig. Sci. 2019, 37, 657–667. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Li, R. Remote sensing-based assessment of the crop, energy and water nexus in the Central Valley, California. Remote Sens. 2019, 11, 2701. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Zamani, H.; Etedali, H.R.; Dehghanpir, S. Assessment of citrus water footprint components and impact of climatic and non-climatic factors on them. Sci. Hortic. 2019, 150, 344–351. [Google Scholar] [CrossRef]
- Beccali, M.; Cellura, M.; Iudicello, M.; Mistretta, M. Resource consumption and environmental impacts of the agrofood sector: Life cycle assessment of Italian citrus-based products. Environ. Manag. 2009, 43, 707–724. [Google Scholar] [CrossRef]
- Casella, P.; De Rosa, L.; Salluzzo, A.; De Gisi, S. Combining GIS and FAO’s crop water productivity model for the estimation of water footprinting in a temporary river catchment. Sustain. Prod. Consum. 2019, 17, 254–268. [Google Scholar] [CrossRef]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The water footprint of Tunisia from an economic perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef]
- Ferrero, L.M.M.; Araujo, P.A.; Nishihara, A.L.; Valdeón, D.H.; Mele, F.D. Water footprint assessment of lemon and its derivatives in Argentina: A case study in the province of Tucumán. Int. J. Life Cycle Assess. 2021, 26, 1505–1519. [Google Scholar] [CrossRef]
- Fulton, J.; Norton, M.; Shilling, F. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- Gush, M.; Dzikiti, S.; van Der Laan, M.; Steyn, M.; Manamathela, S.; Pienaar, H. Field quantification of the water footprint of an apple orchard, and extrapolation to watershed scale within a winter rainfall Mediterranean climate zone. Agric. For. Meteorol. 2019, 271, 135–147. [Google Scholar] [CrossRef]
- Kuncoro, A.; Purwanto, W.W. Analysis of energy-water nexus palm oil biodiesel production in Riau using life cycle assessment and water footprints methods. Evergreen 2020, 7, 104–110. [Google Scholar] [CrossRef]
- Marvinney, E.; Wook, R.J.; Kendall, A. Trade-offs in net lie cycle energy balance and water consumption in California almond orchards. Energies 2010, 13, 3195. [Google Scholar] [CrossRef]
- May, B.; England, J.R.; Raison, R.J.; Paul, K.I. Cradle-to-gate inventory of wood production from Australian softwood plantations and native hardwood forests: Embodied energy, water use and other inputs. For. Ecol. Manag. 2012, 264, 37–50. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef]
- Mungkalasiri, J.; Wisansuwannakorn, R.; Paengjuntuek, W. Water footprint evaluation of oil palm fresh fruit bunches in Pathumthani and Chonburi (Thailand). Int. J. Environ. Sci. Dev. 2015, 6, 455–459. [Google Scholar] [CrossRef]
- Munro, S.A.; Fraser, G.C.G.; Snowball, J.D.; Pahlow, M. Water footprint assessment of citrus production in South Africa: A case study of the Lower Sundays River Valley. J. Clean. Prod. 2016, 135, 668–678. [Google Scholar] [CrossRef]
- Muratoglu, A. Water footprint assessment within a catchment: A case study for Upper Tigris River Basin. Ecol. Indic. 2019, 106, 105467. [Google Scholar] [CrossRef]
- Okumu, B.; Kehbila, A.G.; Osano, P. A review of water-forest-energy-food security nexus data and assessment of studies in East Africa. Curr. Res. Environ. Sustain. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- Rossi, L.; Regni, L.; Rinaldi, S.; Sdringola, P.; Calisti, R.; Brunori, A.; Dini, F.; Proietti, P. Long-term water footprint assessment in a rainfed olive tree grove in the Umbria region, Italy. Agriculture 2020, 10, 8. [Google Scholar] [CrossRef]
- Safitri, L.; Kautsar, V.; Purboseno, S.; Wulandari, R.K.; Ardiyanto, A. Water footprint Analysis of oil palm (Case study of the Pundu Region, Central Borneo). Int. J. Oil Palm 2018, 1, 95–102. Available online: https://ijop.id/index.php/ijop/article/view/14 (accessed on 20 April 2022).
- Safitri, L.; Nermantoro, H.; Purboseno, S.; Kautsar, V.; Saptomo, S.K.; Kurniawan, A. Water footprint and crop water usage of oil palm in Central Kalimantan: Environmental sustainability indicators for different crop age and soil conditions. Water 2019, 11, 35. [Google Scholar] [CrossRef]
- Salmoral, G.; Aldaya, M.M.; Chico, D.; Garrido, A.; Llamas, M.R. The water footprint of olives and olive oil in Spain. Span. J. Agric. Res. 2011, 9, 1089–1104. [Google Scholar] [CrossRef]
- Santosa, E.; Stefano, I.M.; Tarigan, A.G.; Wachjar, A.; Zaman, S.; Agusta, H. Tree-based water footprint assessment on established oil palm plantation in North Sumatera, Indonesia. J. Agron. Indones. 2017, 46, 111–118. [Google Scholar] [CrossRef]
- Schyns, J.F.; Booij, M.J.; Hoekstra, A.Y. The water footprint of wood for lumber, pulp, paper, fuel and firewood. Adv. Water Resour. 2017, 107, 490–501. [Google Scholar] [CrossRef]
- Souissi, A.; Chebil, A.; Mtimet, N.; Thabet, C. Virtual water flows and water value in Tunisia: The case of wheat and olive. Arab. J. Geosci. 2019, 12, 421. [Google Scholar] [CrossRef]
- Subramaniam, V.; Hashim, Z. Charting the water footprint for Malaysian crude palm oil. J. Clean. Prod. 2018, 178, 675–687. [Google Scholar] [CrossRef]
- Subramaniam, V.; Hasmim, Z.; Loh, S.K.; Astimar, A.A. Assessing WF for the oil palm supply chain-a cradle to gate study. Agric. Water Manag. 2020, 237, 106184. [Google Scholar] [CrossRef]
- Suttayakul, P.; Aran, H.; Suksaroj, C.; Mungkalasiri, J.; Wisansuwannakorn, R.; Musikavong, C. Water footprints of products of oil palm plantations and palm oil mills in Thailand. Sci. Total Environ. 2016, 542, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Symeonidou, S.; Vagiona, D. Water footprints of crops on Rhodes Island. Water 2019, 11, 1084. [Google Scholar] [CrossRef]
- Vanham, D. Does the water footprint concept provide relevant information to address the water-food-energy-ecosystem nexus? Ecosyst. Serv. 2016, 17, 298–307. [Google Scholar] [CrossRef]
- Xylogiannis, E.; Green, S.; Dichio, B.; Montanaro, G.; Clothier, B. Seasonal irrigation volumes and water footprint in a Mediterranean peach orchard. Acta Hortic. 2018, 1150, 349–354. [Google Scholar] [CrossRef]
- Zotou, I.; Tsihrintzis, V.A. The water footprint of crops in the area of Mesogeia, Attiki, Greece. Environ. Process. 2017, 4 (Suppl. 1), S63–S79. [Google Scholar] [CrossRef]
- Rallo, G.; González-Altozano, P.; Manzano-Juárez, J.; Provenzano, G. Using field measurements and FAO-56 model to assee the eco-physiological of citrus orchards under regulated déficit irrigation. Agric. Water Mang. 2017, 180, 136–147. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agric. Water Manag. 2020, 237, 106193. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Passera, C.; Rulli, M.C.; Rosa, L.; Ciraolo, G.; D’Odorico, P. Hydrological consequences of natural rubber plantations in Southeast Asia. Land Degrad. Dev. 2020, 31, 2060–2073. [Google Scholar] [CrossRef]
- Bai, X.; Ren, X.; Khanna, N.Z.; Zhang, G.; Zhou, N.; Bai, Y.; Hu, M. A comparative study of a full value-chain water footprint assessment using two international standards at a large-scale hog farm in China. J. Clean. Prod. 2018, 176, 557–565. [Google Scholar] [CrossRef]
- Haie, N.; Freitas, M.R.; Pereira, J.C. Integrating water footprint and efficiency: Overcoming water footprint criticisms and improving decision making. Water Altern. 2018, 11, 933–956. [Google Scholar]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Ridoutt, B.; Pfister, S. A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. Int. J. Life Cycle Assess. 2013, 18, 204–207. [Google Scholar] [CrossRef]
- UNEP-SETAC. Life Cycle Initiative Global Guidance for Life Cycle Impact Assessment Indicators (Vol 1). Edited by: Rolf Frischknecht and Olivier Jolliet. 2017. Available online: http://www.lifecycleinitiative.org/applying-lca/lcia-cf/ (accessed on 20 April 2022).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage paper No 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Monteith, J.L. Evaporation and the environment. In The State and Movement of Water in Living Organisms. XIXth Symposium of the Society for Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper No 24; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1977. [Google Scholar]
- Fisher, J.B.; Whittaker, R.J.; Malhi, Y. ET come home: Potential evapotranspiration in geographical ecology. Global Ecol. Biogeogr. 2011, 20, 1–18. [Google Scholar] [CrossRef]
- Núñez, M.; Pfister, S.; Roux, P.; Anton, A. Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows. Environ. Sci. Technol. 2013, 47, 12258–12265. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Bulle, C.; Johnson, M.S. Land Use in LCA: Including regionally altered precipitation to quantify ecosystem damage. Environ. Sci. Technol. 2016, 50, 11769–11778. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Bulle, C.C.; Johnson, M.S. A contribution to harmonize water footprint assessments. Glob. Environ. Chang. 2018, 53, 252–264. [Google Scholar] [CrossRef]
- Todd, R.W.; Evett, S.R.; Howell, T.A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric. For. Meteorol. 2000, 103, 335–348. [Google Scholar] [CrossRef]
- Hirschi, M.; Michel, D.; Lehner, I.; Seneviratne, S.I. A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration. Hydrol. Earth Syst. Sci. 2017, 21, 1809–1825. [Google Scholar] [CrossRef] [Green Version]
- Heistermann, M.; Bogena, H.; Francke, T.; Guntner, A.; Jakobi, J.; Rasche, D.; Schron, M.; Dopper, V.; Fersch, B.; Groch, J.; et al. Soil moisture observation in a forested headwater catchment: Combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach. Earth Syst. Sci. Data 2022, 14, 2501–2519. [Google Scholar] [CrossRef]
- Malek, E.; Binham, G.E. Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration. J. Hidrol. 1993, 146, 209–220. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Predicting the Effect of Vegetation Changes on Catchment Average Water Balance; Technical Report 99/12; Cooperative Research Centre for Catchment Hydrology: Melbourne, VIC, Australia, 1999. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Xie, P.; Zhuo, L.; Yang, X.; Huang, H.; Gao, X.; Wu, P. Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin: A case for the Yellow River basin. J. Hidrol. 2020, 590, 125222. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e3268. [Google Scholar] [CrossRef]
Reference | Blue Water Consumption (m3/m3 Wood) | Green Water Consumption (m3/m3 Wood) | Total Water Consumption (m3/m3 Wood) |
---|---|---|---|
[38] | - | - |
|
[59] | - |
| - |
[73] | 12 (coniferous, non-coniferous) | 281 (coniferous, non-coniferous) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raluy, R.G.; Quinteiro, P.; Dias, A.C. Water Footprint of Forest and Orchard Trees: A Review. Water 2022, 14, 2709. https://doi.org/10.3390/w14172709
Raluy RG, Quinteiro P, Dias AC. Water Footprint of Forest and Orchard Trees: A Review. Water. 2022; 14(17):2709. https://doi.org/10.3390/w14172709
Chicago/Turabian StyleRaluy, Rosa Gemma, Paula Quinteiro, and Ana Cláudia Dias. 2022. "Water Footprint of Forest and Orchard Trees: A Review" Water 14, no. 17: 2709. https://doi.org/10.3390/w14172709
APA StyleRaluy, R. G., Quinteiro, P., & Dias, A. C. (2022). Water Footprint of Forest and Orchard Trees: A Review. Water, 14(17), 2709. https://doi.org/10.3390/w14172709