Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments
Abstract
1. Introduction
2. Materials and Methods
3. Result
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Royal Botanic Gardens, Kew. The State of the World’s Plants Report; Royal Botanic Gardens, Kew: Richmond, UK, 2020. [Google Scholar]
- IUCN Red List of Threatened Species. 2020-3. Available online: https://www.iucnredlist.org/ (accessed on 5 September 2021).
- Botanic Gardens Conservation International (BGCI). State of the World’s Trees; BGCI: Richmond, UK, 2021. [Google Scholar]
- Silva, S.V.; Andermann, T.; Zizka, A.; Kozlowski, G.; Silvestro, D. Global Estimation and Mapping of the Conservation Status of Tree Species Using Artificial Intelligence. Front. Plant Sci. 2022, 13, 839792. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; Ghazaly, U.M.; Callmander, M.W. Conservation status of the endangered Nubian dragon tree Dracaena ombet in Gebel Elba national park, Egypt. Oryx 2015, 49, 704–709. [Google Scholar] [CrossRef]
- Andres, S.E.; Powell, J.R.; Emery, N.J.; Rymer, P.D.; Gallagher, R.V. Does threatened species listing status predict climate change risk? A case study with Australian Persoonia (Proteaceae) species. Glob. Ecol. Conserv. 2021, 31, e01862. [Google Scholar] [CrossRef]
- Kingsford, R. Ecology of Desert Rivers; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sada, D.W.; Fleishman, E.; Murphy, D.D. Associations among spring-dependent aquatic assemblages and environmental and land use gradients in a Mojave Desert mountain range. Divers. Distrib. 2005, 11, 91–99. [Google Scholar] [CrossRef]
- Box, J.B.; Duguid, A.; Read, R.E.; Kimber, R.G.; Knapton, A.; Davis, J.; Bowland, A.E. Central Australian waterbodies: The importance of permanence in a desert landscape. J. Arid Environ. 2008, 72, 1395–1413. [Google Scholar] [CrossRef]
- Vázquez-Domínguez, E.; Hernández-Valdés, A.; Rojas-Santoyo, A.; Zambrano, L. Contrasting genetic structure in two codistributed freshwater fish species of highly seasonal systems. Rev. Mex. Biodivers. 2009, 80, 181–192. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- Maasri, A.; Jähnig, S.C.; Adamescu, M.C.; Adrian, R.; Baigun, C.; Baird, D.J.; Batista-Morales, A.; Bonada, N.; Brown, L.E.; Cai, Q.; et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022, 25, 255–263. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.; Wu, S. Climate Change and Water; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2008. [Google Scholar]
- Davis, J.; Pavlova, A.; Thompson, R.; Sunnucks, P. Evolutionary refugia and ecological refuges: Key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob. Chang. Biol. 2013, 13, 1970–1984. [Google Scholar]
- Strayer, D.L.; Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 2010, 29, 344–358. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.L.; Olden, J.D.; Pelland, N.A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci. USA 2014, 111, 13894–13899. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Clavero, M.; Ninyerola, M.; Hermoso, V.; Filipe, A.F.; Pla, M.; Villero, D.; Brotons, L.; Delibes, M. Historical citizen science to understand and predict climate-driven trout decline. Proc. R. Soc. B Biol. Sci. 2017, 284, 20161979. [Google Scholar] [CrossRef]
- Chappuis, E.; Ballesteros, E.; Gacia, E. Distribution and richness of aquatic plants across Europe and Mediterranean countries: Patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci. 2012, 23, 985–997. [Google Scholar] [CrossRef]
- Hossain, K.; Yadav, S.; Quaik, S.; Pant, G.; Maruthi, A.Y.; Ismail, N. Vulnerabilities of macrophytes distribution due to climate change. Theor. Appl. Climatol. 2017, 129, 1123–1132. [Google Scholar] [CrossRef]
- Sleith, R.S.; Wehr, J.D.; Karol, K.G. Untangling climate and water chemistry to predict changes in freshwater macrophyte distributions. Ecol. Evol. 2018, 8, 2802–2811. [Google Scholar] [CrossRef] [PubMed]
- Pinna, M.S.; Loi, M.C.; Calderisi, G.; Fenu, G. Extremes Rainfall Events on Riparian Flora and Vegetation in the Mediterranean Basin: A Challenging but Completely Unexplored Theme. Water 2022, 14, 817. [Google Scholar] [CrossRef]
- Ragupathy, S.; Seigler, D.S.; Ebinger, J.E.; Maslin, B.R. New combinations in Vachellia and Senegalia (Leguminosae: Mimosoideae) for south and west Asia. Phytotaxa 2014, 162, 174–180. [Google Scholar] [CrossRef]
- Armoza-Zvuloni, R.; Shlomi, Y.; Shem-Tov, R.; Stavi, I.; Abadi, I. Drought and Anthropogenic Effects on Acacia Populations: A Case Study from the Hyper-Arid Southern Israel. Soil Syst. 2021, 5, 23. [Google Scholar] [CrossRef]
- Hobbs, J.J.; Krzywinski, K.; Andersen, G.L.; Talib, M.; Pierce, R.H.; Saadallah, A.E.M. Acacia trees on the cultural landscapes of the Red Sea Hills. Biodivers. Conserv. 2014, 23, 2923–2943. [Google Scholar] [CrossRef]
- Munzbergova, Z.; Ward, D. Acacia trees as keystone species in the Negev desert ecosystems. J. Veg. Sci. 2002, 13, 227–236. [Google Scholar] [CrossRef]
- Nothers, M.; Segev, N.; Kreyling, J.; Hjazin, A.; Groner, E. Desert Vegetation Forty Years after an Oil Spill. J. Environ. Qual. 2017, 46, 568–575. [Google Scholar] [CrossRef]
- Rohner, C.; Ward, D. Large mammalian herbivores and the conservation of arid Acacia stands in the Middle East. Conserv. Biol. 1999, 13, 1162–1171. [Google Scholar] [CrossRef]
- Belsky, A.J.; Mwonga, S.M.; Amundson, R.G.; Duxbury, J.M.; Ali, A.R. Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall savannas. J. App. Ecol. 1993, 30, 143–155. [Google Scholar] [CrossRef]
- Milton, S.J.; Dean, W.R.J. How useful is the keystone species concept, and can it be applied to Acacia erioloba in the Kalahari desert? Zeitschrift fuer Oekologie und Naturschutz 1995, 4, 147–156. [Google Scholar]
- Stavi, I.; Silver, M.; Avni, Y. Latitude, basin size, and microhabitat effects on the viability of Acacia trees in the Negev and Arava, Israel. Catena 2014, 114, 149–156. [Google Scholar] [CrossRef]
- Al-Rammahi, H.M.; Mohammad, M.K. The current status, ecological and biometrical assessment and threats on Acacia gerrardii negevensis Zohary (Fabaceae) in Al-Najaf Desert, Iraq. Plant Arch. 2020, 20, 4467–4476. [Google Scholar]
- Fenu, G.; Al-Rammahi, H.M.; Mohammad, M.K.; Perrino, E.V.; Rosati, L.; Wagensommer, R.P.; Orsenigo, S. Global and Regional IUCN Red List Assessments: 10. Ital. Bot. 2020, 10, 73–81. [Google Scholar] [CrossRef]
- Townsend, C.C.; Guest, E. Flora of Iraq, 3-Leguminales; Royal Botanic Gardens, Kew: Richmond, UK, 1974. [Google Scholar]
- Thalen, D.C.P. Ecology and Utilization of Desert Shrub Rangelands in Iraq; Springer Science & Business Media: Berlin, Germany, 1979. [Google Scholar]
- Dyer, C. New names for the African Acacia species in Vachellia and Senegalia. South For. J. For. Sci. 2014, 76, 980090. [Google Scholar] [CrossRef][Green Version]
- IUCN Threats Classification Scheme v. 3.2. 2012. Available online: https://www.iucnredlist.org/technical-documents/classification-schemes/threats-classification-scheme (accessed on 10 January 2021).
- IUCN. Guidelines for Using the IUCN Red List Categories and Criteria: Version 15; Standards and Petitions Committee. 2022. Available online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 1 December 2020).
- Burgman, M.A.; Fox, J.C. Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. A. Conserv. 2003, 6, 19–28. [Google Scholar] [CrossRef]
- Gargano, D.; Fenu, G.; Medagli, P.; Sciandrello, S.; Bernardo, L. The status of Sarcopoterium spinosum (Rosaceae) at the western periphery of its range: Ecological constraints lead to conservation concerns. Isr. J. Plant Sci. 2007, 55, 1–13. [Google Scholar] [CrossRef]
- Bachman, S.; Moat, J.; Hill, A.W.; Torre, J.; Scott, B. Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 2011, 150, 117–126. [Google Scholar] [CrossRef]
- Ahmed, E.S.; Hassan, A.S. The Impact of the Extreme Air Temperatures on the Characteristics of Iraq Weather. Iraqi J. Sci. 2018, 59, 1139–1145. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Bouchenak-Khelladi, Y.; Maurin, O.; Hurter, J.; van der Bank, M. The evolutionary history and biogeography of Mimosoideae (Leguminosae): An emphasis on African acacias. Mol. Phylogen. Evol. 2010, 57, 495–508. [Google Scholar] [CrossRef]
- Kyalangalilwa, B.; Boatwright, J.S.; Daru, B.H.; Maurin, O.; van der Bank, M. Phylogenetic position and revised classification of Acacia sl (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 2013, 172, 500–523. [Google Scholar] [CrossRef]
- Comben, D.F.; McCulloch, G.A.; Brown, G.K.; Walter, G.H. Phylogenetic placement and the timing of diversification in Australia’s endemic Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) species. Aust. Syst. Bot. 2020, 33, 103–109. [Google Scholar] [CrossRef]
- Anufriieva, E.V.; Shadrin, N.V. Extreme hydrological events destabilize aquatic ecosystems and open doors for alien species. Quat. Int. 2018, 475, 11–15. [Google Scholar] [CrossRef]
- Lozano, V. Distribution of Five Aquatic Plants Native to South America and Invasive Elsewhere under Current Climate. Ecologies 2021, 2, 27–42. [Google Scholar] [CrossRef]
- Orsenigo, S.; Abeli, T.; Al-Rammahi, H.M.; Azzaro, D.; Cambria, S.; D’Agostino, M.; Mohammad, M.K.; Tavilla, G.; Fenu, G. Global and Regional IUCN Red List Assessments: 11. Ital. Bot. 2021, 11, 131–143. [Google Scholar] [CrossRef]
- Wilms, T.M.; Wagner, P.; Shobrak, M.; Lutzmann, N.; Böhme, W. Aspects of the ecology of the Arabian spiny-tailed lizard (Uromastyx aegyptia microlepis Blanford, 1875) at Mahazat as-Sayd protected area, Saudi Arabia. Salamandra 2010, 46, 131–140. [Google Scholar]
- Al-Rammahi, H.M.; Mohammad, M.K. Birds of conservation concern at Al-Najaf Desert, Southern Desert of Iraq. Bull. Iraq Nat. Hist. Mus. 2022, 17, 67–87. [Google Scholar] [CrossRef]
- Jdeidi, T.; Masseti, M.; Nader, I.; de Smet, K.; Cuzin, F. The IUCN Red List of Threatened Species. 2010: E.T8976A12944941. Available online: https://www.iucnredlist.org/species/10274/3188449 (accessed on 9 July 2022).
- Al-Sheikhly, O.F.; Haba, M.K.; Barbanera, F.; Csorba, G.; Harrison, D.L. Checklist of the Mammals of Iraq (Chordata: Mammalia). Bonn Zool. Bull. 2015, 64, 33–58. [Google Scholar]
- Heinken, T.; Weber, E. Consequences of habitat fragmentation for plant species: Do we know enough? Perspect. Plant. Ecol. Syst. 2013, 15, 205–2016. [Google Scholar] [CrossRef]
- Garcia-Jacas, N.; Requena, J.; Massó, S.; Vilatersana, R.; Blanché, C.; López-Pujol, J. Genetic diversity and structure of the narrow endemic Seseli farrenyi (Apiaceae): Implications for translocation. PeerJ 2021, 9, e10521. [Google Scholar] [CrossRef]
- Godefroid, S.; Piazza, C.; Rossi, G.; Buord, S.; Stevens, A.D.; Aguraiuja, R.; Cowell, C.; Weekley, C.W.; Vogg, G.; Iriondo, J.M.; et al. How successful are plant species reintroductions? Biol. Conserv. 2011, 144, 672–682. [Google Scholar] [CrossRef]
- Fenu, G.; Bacchetta, G.; Charalambos, S.C.; Fournaraki, C.; Giusso del Galdo, G.P.; Gotsiou, P.; Kyratzis, A.; Piazza, C.; Vicens, M.; Pinna, M.S.; et al. An early evaluation of translocation actions for endangered plant species on Mediterranean islands. Plant Divers. 2019, 41, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Garfì, G.; Carimi, F.; Fazan, L.; Gristina, A.S.; Kozlowski, G.; Livreri Console, S.; Motisi, A.; Pasta, S. From glacial refugia to hydrological microrefugia: Factors and processes driving the persistence of the climate relict tree Zelkova sicula. Ecol. Evol. 2021, 11, 2919–2936. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Yang, F.; Wang, D.; Song, K.; Yu, Z.; Sun, W.; Yang, J. Population structure and regeneration dynamics of Firmiana major, a dominant but endangered tree species. For. Ecol. Manag. 2020, 462, 117993. [Google Scholar] [CrossRef]
Locality | No. of Plants (2020) | No. of Mature Plants (2020) | No. of Mature Plants Producing Seeds (2020) | No. of Plants (2021) | No. of Mature Plants (2021) | No. of Mature Plants Producing Seeds (2021) | Seedling Recruitment | Main Threats | Historical Population Trend (Last 10 Years) |
---|---|---|---|---|---|---|---|---|---|
Birkat Al-Talhat | 275 | 122 | 84 | 210 (−23.6%) | 81 | 81 (−4%) | Yes | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Continuous decline |
Abu Talah stream (mid part) | 204 | 75 | 39 | 204 | 70 | 39 | Yes | 5.3; 8.2; 11; 2.3; 6.1. | Continuous decline |
Abu Talah stream (terminal part) | 52 | 8 | 2 | 50 (−4%) | 6 | 0 (−100%) | Yes | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Decline |
Weier stream (initial part) | 221 | 80 | 32 | 221 | 80 | 32 | No | 5.3; 8.2; 11; 2.3; 6.1; 6.2. | Stable |
Weier stream (terminal part) | 6 | 2 | 2 | 6 | 0 | 2 | No | 5.3; 8.2; 11; 2.3; 6.1; 3.2; 8.1. | Continuous decline |
Total | 758 | 287 | 159 | 691 (−8.9%) | 237 | 154 (−3.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, M.K.; Al-Rammahi, H.M.; Cogoni, D.; Fenu, G. Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water 2022, 14, 2638. https://doi.org/10.3390/w14172638
Mohammad MK, Al-Rammahi HM, Cogoni D, Fenu G. Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water. 2022; 14(17):2638. https://doi.org/10.3390/w14172638
Chicago/Turabian StyleMohammad, Mohammad K., Hayder M. Al-Rammahi, Donatella Cogoni, and Giuseppe Fenu. 2022. "Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments" Water 14, no. 17: 2638. https://doi.org/10.3390/w14172638
APA StyleMohammad, M. K., Al-Rammahi, H. M., Cogoni, D., & Fenu, G. (2022). Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water, 14(17), 2638. https://doi.org/10.3390/w14172638