Vulnerability Mapping of Groundwater Resources of Mekelle City and Surroundings, Tigray Region, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Location, Climate, and Topography
2.1.2. Geological and Hydrogeological Settings
2.1.3. Data Sources
2.2. Analysis and Evaluation Technique
2.2.1. Lineaments
2.2.2. Land Use Map
2.2.3. Rating and Weight Assigning
2.2.4. Sensitivity Analysis
Single-Parameter Sensitivity Analysis
Map-Removal Sensitivity Analysis
2.3. Validation Using Nitrate Concentration
3. Results and Discussion
3.1. Depth to the Water Table
3.2. Recharge
3.3. Aquifer Media
3.4. Soil Rating
3.5. Topography
3.6. Impact of Vadose Zone
3.7. Hydraulic Conductivity
3.8. Sensitivity Analysis
3.8.1. Single-Parameter Sensitivity Analysis
3.8.2. Map-Removal Sensitivity Analysis
3.8.3. Lineament and Land Use Parameters
3.9. Aquifer Vulnerability Based on the DRASTIC and Modified DRASTIC Indices
3.10. Validation of the Vulnerability Index Maps Using Nitrate
3.11. Water Well Locations and Potential Risks of Anthropogenic Pollution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smedley, P.L.; Smith, B.; Abesser, C.; Lapworth, D. Uranium Occurrence and Behaviour in British Groundwater; British Geological Survey Commissioned Report, CR/06/050N; Natural Enviromental Research Council: Swindon, UK, 2006; 60p. [Google Scholar]
- Burchi, S.; Mechlem, K. Groundwater in International Law Compilation of Treaties and Other Legal Instuments; United Nations Educational, Scientific and Cultural Organization Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Mirumachi, N.; Duda, A.; Gregulska, J.; Smetek, J. The Human Right to Drinking Water: Impact of Large-Scale Agriculture and Industry. Policy Department for External Relations, Directorate General for External Policies of the Union, European Parliament. 2021. Available online: https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/653649/EXPO_IDA(2021)653649_EN.pdf (accessed on 2 July 2022).
- Aljawzi, A.A.; Fang, H.; Abbas, A.A.; Khailah, E.Y. Assessment of Water Resources in Sana’a Region, Yemen Republic (Case Study). Water 2022, 14, 1039. [Google Scholar] [CrossRef]
- Burayu, D.G. Identification of Groundwater Potential Zones Using AHP, GIS and RS Integration: A Case Study of Didessa Sub-Basin, Western Ethiopia. Remote Sens. Land 2022, 6, 1–15. [Google Scholar] [CrossRef]
- Mays, D.; Scheibe, T. Groundwater Contamination, Subsurface Processes, and Remediation Methods: Overview of the Special Issue of Water on Groundwater Contamination and Remediation. Water 2018, 10, 1708. [Google Scholar] [CrossRef] [Green Version]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece. Water 2021, 13, 2809. [Google Scholar] [CrossRef]
- Hirji, R.; Ibrekk, H.O. Environmental and Water Resources Management; International Bank for Reconstruction and Development: Washington, DC, USA, 2001; Available online: https://www.academia.edu/27649090/Environmental_and_water_ resources_management (accessed on 28 June 2022).
- Stalder, E.; Blanc, A.; Haldimann, M.; Dudler, V. Occurrence of Uranium in Swiss Drinking Water. Chemosphere 2012, 86, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.V.; Hackley, K.C.; Hwang, H.H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O’Kelly, D.J. Characterization and Identification of Na-Cl Sources in Ground Water. Ground Water 2006, 44, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and Consequences of Groundwater Contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Behera, A.K.; Pradhan, R.M.; Kumar, S.; Chakrapani, G.J.; Kumar, P. Assessment of Groundwater Flow Dynamics Using MODFLOW in Shallow Aquifer System of Mahanadi Delta (East Coast), India. Water 2022, 14, 611. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Expounding the Origin of Chromium in Groundwater of the Sarigkiol Basin, Western Macedonia, Greece: A Cohesive Statistical Approach and Hydrochemical Study. Environ. Monit. Assess. 2019, 191, 509. [Google Scholar] [CrossRef]
- Rukundo, E.; Doğan, A. Dominant Influencing Factors of Groundwater Recharge Spatial Patterns in Ergene River Catchment, Turkey. Water 2019, 11, 653. [Google Scholar] [CrossRef] [Green Version]
- Girmay, E.H. Litho–Structural Controls on the Groundwater Flow System and Hydrogeochemical Setup of the Mekelle Outlier and Surrounding Areas, Northern Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Salih, A.O.; Al-Manmi, D.A. DRASTIC Model Adjusted with Lineament Density to Map Groundwater Vulnerability: A Case Study in Rania Basin, Kurdistan, Iraq. Environ. Sci. Pollut. Res. 2021, 28, 59731–59744. [Google Scholar] [CrossRef]
- Sosa, J.I.M.; Gutiérrez Anguamea, G.A.; Monreal, R.; Grijalva Noriega, F.J.; Tapia-Villaseñor, E.M. Hydrogeomorphologic Mapping of the Transboundary San Pedro Aquifer: A Tool for Groundwater Characterization. Water 2022, 14, 906. [Google Scholar] [CrossRef]
- Fenta, M.C.; Anteneh, Z.L.; Szanyi, J.; Walker, D. Hydrogeological Framework of the Volcanic Aquifers and Groundwater Quality in Dangila Town and the Surrounding Area, Northwest Ethiopia. Groundw. Sustain. Dev. 2020, 11, 100408. [Google Scholar] [CrossRef]
- Van den Broeck, S. The Sustainability of the Aynalem Well Field, Mekelle, Ethiopia. Master’s Thesis, Ghent University, Ghent, Belgium, 2018. [Google Scholar]
- Lin, J.-J.; Liou, Y.-A. Integrating In-Situ Data and RS-GIS Techniques to Identify Groundwater Potential Sites in Mountainous Regions of Taiwan. Appl. Sci. 2020, 10, 4119. [Google Scholar] [CrossRef]
- Chandra, S.; Rao, V.A.; Krishnamurthy, N.S.; Dutta, S.; Ahmed, S. Integrated Studies for Characterization of Lineaments Used to Locate Groundwater Potential Zones in a Hard Rock Region of Karnataka, India. Hydrogeol. J. 2006, 14, 1042–1051. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Song, X.; Shao, G.; Hu, T. Effects of Land Use on Stream Water Quality in the Rapidly Urbanized Areas: A Multiscale Analysis. Water 2020, 12, 1123. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, M.; Gessner, M.O.; Fink, G.; Ternes, T.A.; Sögding, C.; Schulz, R. Ecotoxicologial Evaluation of Wastewater Ozonation Based on Detritus–Detritivore Interactions. Chemosphere 2011, 82, 355–361. [Google Scholar] [CrossRef]
- Stellato, L.; Coda, S.; Arienzo, M.; de Vita, P.; di Rienzo, B.; D’Onofrio, A.; Ferrara, L.; Marzaioli, F.; Trifuoggi, M.; Allocca, V. Natural and Anthropogenic Groundwater Contamination in a Coastal Volcanic-Sedimentary Aquifer: The Case of the Archaeological Site of Cumae (Phlegraean Fields, Southern Italy). Water 2020, 12, 3463. [Google Scholar] [CrossRef]
- Vigliotti, M.; Busico, G.; Ruberti, D. Assessment of the Vulnerability to Agricultural Nitrate in Two Highly Diversified Environmental Settings. Environments 2020, 7, 80. [Google Scholar] [CrossRef]
- Goonetilleke, A.; Vithanage, M. Water Resources Management: Innovation and Challenges in a Changing World. Water 2017, 9, 281. [Google Scholar] [CrossRef]
- Terrone, M.; Paliaga, G.; Bazzurro, N.; Marchese, A.; Faccini, F. Groundwater Resources in a Fractured-Rock Aquifer, Conglomerate of Portofino. J. Maps 2021, 17, 268–278. [Google Scholar] [CrossRef]
- Voudouris, K.; Kazakis, N. Groundwater Quality and Groundwater Vulnerability Assessment. Environments 2021, 8, 100. [Google Scholar] [CrossRef]
- Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty; National Academies Press: Washington, DC, USA, 1993; p. 2050. ISBN 978-0-309-04799-9.
- Huan, H.; Wang, J.; Teng, Y. Assessment and Validation of Groundwater Vulnerability to Nitrate Based on a Modified DRASTIC Model: A Case Study in Jilin City of Northeast China. Sci. Total Environ. 2012, 440, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Cloutier, V.; Güler, C.; Kazakis, N. A Review of GIS-Integrated Statistical Techniques for Groundwater Quality Evaluation and Protection. Environ. Earth Sci. 2018, 77, 681. [Google Scholar] [CrossRef]
- Yan, C.-A.; Zhang, W.; Zhang, Z.; Liu, Y.; Deng, C.; Nie, N. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China. PLoS ONE 2015, 10, e0119130. [Google Scholar] [CrossRef]
- Lee, H.; Suk, H.; Chen, J.-S.; Park, E. Application of a Developed Numerical Model for Surfactant Flushing Combined with Intermittent Air Injection at Field Scale. Water 2022, 14, 316. [Google Scholar] [CrossRef]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Ersoy, A.F.; Gültekin, F. DRASTIC-Based Methodology for Assessing Groundwater Vulnerability in the Gümüşhacıköy and Merzifon Basin (Amasya, Turkey). Earth Sci. Res. J. 2013, 17, 33–40. [Google Scholar]
- Voudouris, K. Assessment of Intrinsic Vulnerability Using the DRASTIC Model and GIS in the Kiti Aquifer, Cyprus. Eur. Water 2010, 30, 13–24. [Google Scholar]
- Shah, S.H.I.A.; Yan, J.; Ullah, I.; Aslam, B.; Tariq, A.; Zhang, L.; Mumtaz, F. Classification of Aquifer Vulnerability by Using the DRASTIC Index and Geo-Electrical Techniques. Water 2021, 13, 2144. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-Based DRASTIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Pollution Potential Using Hydrogeological Settings; U.S. Environment Protection Agency/600/2-87/035: Washington, DC, USA, 1987.
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Mapping the Groundwater Vulnerability for Pollution at the Pan African Scale. Sci. Total Environ. 2016, 544, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Heiß, L.; Bouchaou, L.; Tadoumant, S.; Reichert, B. Index-Based Groundwater Vulnerability and Water Quality Assessment in the Arid Region of Tata City (Morocco). Groundw. Sustain. Dev. 2020, 10, 100344. [Google Scholar] [CrossRef]
- Zghibi, A.; Merzougui, A.; Chenini, I.; Ergaieg, K.; Zouhri, L.; Tarhouni, J. Groundwater Vulnerability Analysis of Tunisian Coastal Aquifer: An Application of DRASTIC Index Method in GIS Environment. Groundw. Sustain. Dev. 2016, 2–3, 169–181. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; de Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, K.; Deckers, J.; Gebrehiwot, K. Application of a Spatially Distributed Water Balance Model for Assessing Surface Water and Groundwater Resources in the Geba Basin, Tigray, Ethiopia. J. Hydrol. 2013, 499, 110–123. [Google Scholar] [CrossRef]
- Berhe Zenebe, G.; Hussien, A.; Girmay, A.; Hailu, G. Spatial Analysis of Groundwater Vulnerability to Contamination and Human Activity Impact Using a Modified DRASTIC Model in Elalla-Aynalem Catchment, Northern Ethiopia. Sustain. Water Resour. Manag. 2020, 6, 51. [Google Scholar] [CrossRef]
- Hagos, M.; Gebreyohannes, T.; Amare, K.; Hussien, A.; Berhane, G.; Walraevens, K.; Koeberl, C.; van Wyk de Vries, B.; Cavalazzi, B. Tectonic Link between the Neoproterozoic Dextral Shear Fabrics and Cenozoic Extension Structures of the Mekelle Basin, Northern Ethiopia. Int. J. Earth Sci. 2020, 109, 1957–1974. [Google Scholar] [CrossRef]
- Arkin, Y.; Levitte, D.; Beyth, M. Geological Map of Mekele Sheet Area ND 37-11; Ministry of Mines Geological Survey of Ethiopia: Addis Ababa, Ethiopia, 1971; p. 3.
- Gebreyohannes, T.; Smedt, F.D.; Hagos, M.; Gebresilassie, S.; Amare, K.; Kabeto, K.; Hussein, A.; Nyssen, J.; Bauer, H.; Moeyersons, J.; et al. Large-Scale Geological Mapping of the Geba Basin, Northern Ethiopia. VLIR - Mekelle University IUC Program. 2010. Available online: https://www.academia.edu/en/71310929/Large_Scale_Geological_mapping_of_the_Geba_basin_northern_Ethiopia (accessed on 2 July 2022).
- Küster, D.; Dwivedi, S.B.; Kabeto, K.; Mehari, K.; Matheis, G. Petrogenetic Reconnaissance Investigation of Mafic Sills Associated with Flood Basalts, Mekelle Basin, Northern Ethiopia: Implications for Ni–Cu Exploration. J. Geochem. Explor. 2005, 85, 63–79. [Google Scholar] [CrossRef]
- Seyoum, H. Hydraulic and Chemical Characterization of Aquifer System of the Aynalem Wellfield, Northern Ethiopia. Master’s Thesis, Ghent University, Ghent, Belgium, 2017. [Google Scholar]
- Matter, J.M.; Goldberg, D.S.; Morin, R.H.; Stute, M. Contact Zone Permeability at Intrusion Boundaries: New Results from Hydraulic Testing and Geophysical Logging in the Newark Rift Basin, New York, USA. Hydrogeol. J. 2006, 14, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, T.; Mebrahtu, G.; Hadera, A.; Bekele, D.N. Assessment of the Impact of Landfill Leachate on Groundwater and Surrounding Surface Water: A Case Study of Mekelle City, Northern Ethiopia. Sustain. Water Resour. Manag. 2019, 5, 1641–1649. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; de Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, K.; Deckers, J.; Gebrehiwot, K. Regional Groundwater Flow Modeling of the Geba Basin, Northern Ethiopia. Hydrogeol. J. 2017, 25, 639–655. [Google Scholar] [CrossRef]
- Kassa, G.; Tadesse, N.; Yohannes, T.G. Aquifers Characterization and Productivity in Ellala Catchment, Tigray, Northern Ethiopia. Momona Ethiop. J. Sci. 2015, 7, 203. [Google Scholar] [CrossRef] [Green Version]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef]
- Kahsay, G.H. Groundwater Resource Assessment through Distributed Steady-State Flow Modeling, Aynalem Wellfield (Mekele, Ethiopia). Master’s Thesis, International Institute for Geoinformation Science and Earth Observation Enschede, Enschede, The Netherlands, 2008. [Google Scholar]
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems; Spatial Information Systems and Geostatistics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Abdullah, T.O.; Ali, S.S.; Al-Ansari, N.A.; Knutsson, S. Groundwater Vulnerability Mapping Using Lineament Density on Standard DRASTIC Model: Case Study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq. Engineering 2015, 7, 644–667. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Youssef, A.M. Manifestation of Remote Sensing Data and GIS on Landslide Hazard Analysis Using Spatial-Based Statistical Models. Arab. J. Geosci. 2010, 3, 319–326. [Google Scholar] [CrossRef]
- Hamza, S.M.; Ahsan, A.; Imteaz, M.A.; Ghazali, A.H.; Mohammed, T.A. GIS-Based FRASTIC Model for Pollution Vulnerability Assessment of Fractured-Rock Aquifer Systems. Environ. Earth Sci. 2017, 76, 197. [Google Scholar] [CrossRef]
- Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of Groundwater Potential Zones in the Comoro Watershed, Timor Leste Using GIS, Remote Sensing and Analytic Hierarchy Process (AHP) Technique. Appl. Water Sci. 2017, 7, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, S.M.; Imran, H.M.; Akib, S. GIS-Based DRASTIC Method for Groundwater Vulnerability Assessment: A Review. J. Risk Res. 2012, 15, 991–1011. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In Proceedings of the 2nd HydroGIS Conference: International Association of Hydrological Sciences; IAHS Publications: Wallingford, UK, 1996; p. 235. [Google Scholar]
- Al-Rawabdeh, A.; Al-Ansari, N.; Al-Taani, A.; Al-Khateeb, F.; Knutsson, S. Modeling the Risk of Groundwater Contamination Using Modified DRASTIC and GIS in Amman-Zerqa Basin, Jordan. Open Eng. 2014, 4, 264–280. [Google Scholar] [CrossRef]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute Error and Sensitivity Analysis of Map Operations in Geographical Informations Systems: Suitability Analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Tomer, T.; Katyal, D.; Joshi, V. Sensitivity Analysis of Groundwater Vulnerability Using DRASTIC Method: A Case Study of National Capital Territory, Delhi, India. Groundw. Sustain. Dev. 2019, 9, 100271. [Google Scholar] [CrossRef]
- Saidi, S.; Bouri, S.; Ben Dhia, H. Sensitivity Analysis in Groundwater Vulnerability Assessment Based on GIS in the Mahdia-Ksour Essaf Aquifer, Tunisia: A Validation Study. Hydrol. Sci. J. 2011, 56, 288–304. [Google Scholar] [CrossRef]
- Oke, S.A. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. Int. J. Environ. Res. Public Health 2020, 17, 2609. [Google Scholar] [CrossRef] [Green Version]
- Ramos Leal, J.A.; Rodríguez Castillo, R. Aquifer Vulnerability Mapping in the Turbio River Valley, Mexico: A Validation Study. Geofísica Int. 2003, 42, 141–156. [Google Scholar] [CrossRef]
- Assaf, H.; Saadeh, M. Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon. Water Resour. Manag. 2009, 23, 775–796. [Google Scholar] [CrossRef]
- Voutchkova, D.D.; Schullehner, J.; Rasmussen, P.; Hansen, B. A High-Resolution Nitrate Vulnerability Assessment of Sandy Aquifers (DRASTIC-N). J. Environ. Manag. 2021, 277, 111330. [Google Scholar] [CrossRef]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.-C.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Tien Bui, D.; Pham, B.T. A Comparison Study of DRASTIC Methods with Various Objective Methods for Groundwater Vulnerability Assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef]
- Vithanage, M.; Mikunthan, T.; Pathmarajah, S.; Arasalingam, S.; Manthrithilake, H. Assessment of Nitrate-N Contamination in the Chunnakam Aquifer System, Jaffna Peninsula, Sri Lanka. SpringerPlus 2014, 3, 271. [Google Scholar] [CrossRef] [Green Version]
- Jasrotia, A.S.; Singh, R. groundwater pollution vulnerability using the drastic model in a gis environment, devak-rui watersheds, India. J. Environ. Hydrol. 2005, 13, 11. [Google Scholar]
- El Baba, M.; Kayastha, P.; Huysmans, M.; De Smedt, F. Groundwater Vulnerability and Nitrate Contamination Assessment and Mapping Using DRASTIC and Geostatistical Analysis. Water 2020, 12, 2022. [Google Scholar] [CrossRef]
- Yenehun, A.; Walraevens, K.; Batelaan, O. Spatial and Temporal Variability of Groundwater Recharge in Geba Basin, Northern Ethiopia. J. Afr. Earth Sci. 2017, 134, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Teklebirhan, A.; Dessie, N.; Tesfamichael, G. Groundwater Recharge, Evapotranspiration and Surface Runoff Estimation Using WetSpass Modeling Method in Illala Catchment, Northern Ethiopia. Momona Ethiop. J. Sci. 2012, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G.; Edmunds, W.M.; Gaye, C.B. Estimating Paleorecharge and Paleoclimate from Unsaturated Zone Profiles. Water Resour. Res. 1992, 28, 2721–2731. [Google Scholar] [CrossRef]
- Piscopo, G. Groundwater Vulnerability Map, Explanatory Notes, Castlereagh Catchment, NSW. Department of Land and Water Conservation, Parramatta. 2001. Available online: http://www.water.nsw.gov.au/__data/assets/pdf_file/0008/549377/quality_groundwater_castlereagh_map_notes.pdf (accessed on 25 May 2022).
- Ahmed, I.; Nazzal, Y.; Zaidi, F. Groundwater Pollution Risk Mapping Using Modified DRASTIC Model in Parts of Hail Region of Saudi Arabia. Environ. Eng. Res. 2017, 23, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Tesfagiorgis, K.; Gebreyohannes, T.; de Smedt, F.; Moeyersons, J.; Hagos, M.; Nyssen, J.; Deckers, J. Evaluation of Groundwater Resources in the Geba Basin, Ethiopia. Bull. Eng. Geol. Environ. 2011, 70, 461–466. [Google Scholar] [CrossRef]
- Pathak, D.R.; Hiratsuka, A.; Awata, I.; Chen, L. Groundwater Vulnerability Assessment in Shallow Aquifer of Kathmandu Valley Using GIS-Based DRASTIC Model. Environ. Geol. 2009, 57, 1569–1578. [Google Scholar] [CrossRef]
- Goodarzi, M.R. Aquifer Vulnerability Identification Using DRASTIC-LU Model Modification by Fuzzy Analytic Hierarchy Process. Modeling Earth Syst. Environ. 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Q.; Liu, P.; He, H.; Xu, W. Influence of Agricultural Irrigation Activity on the Potential Risk of Groundwater Pollution: A Study with Drastic Method in a Semi-Arid Agricultural Region of China. Sustainability 2020, 12, 1954. [Google Scholar] [CrossRef] [Green Version]
- Busico, G.; Kazakis, N.; Colombani, N.; Khosravi, K.; Voudouris, K.; Mastrocicco, M. The Importance of Incorporating Denitrification in the Assessment of Groundwater Vulnerability. Appl. Sci. 2020, 10, 2328. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, A.J.; Kowalczyk, A.; Vrba, J. Groundwater Vulnerability Assessment and Mapping; IAH Selected Papers, Taylor & Francis: London, UK, 2007; Volume 11, p. 86. [Google Scholar]
- Vrba, J.; Zaporozec, A. Guidebook on Mapping Groundwater Vulnerability—IAH International Contributions to Hydrogeology; Heise Publication: Hanover, Germany, 1994; Volume 16, p. 131. [Google Scholar]
- Groundwater Vulnerability and Pollution Risk Assessment; IAH-SP Series; Witkowski, A.J.; Jakóbczyk-Karpierz, S.; Czekaj, J.; Grabala, D. (Eds.) CRC Press: Bota Raton, FL, USA, 2020; Volume 24, 212p. [Google Scholar]
- Adhena, K.; Estifanos, S.; Hagos, M.; Abr, B. physico-chemical characterization of stream water in maichew area, southern tigray, ethiopia. GSJ 2020, 8, 15. [Google Scholar]
- Pradhan, U.K.; Shirodkar, P.V.; Sahu, B.K. Physico-Chemical Characteristics of the Coastal Water off Devi Estuary, Orissa and Evaluation of Its Seasonal Changes Using Chemometric Techniques. Curr. Sci. 2009, 96, 7. [Google Scholar]
- Rai, R.; Sharma, S.; Gurung, D.B.; Sitaula, B.K.; Shah, R.D.T. Assessing the Impacts of Vehicle Wash Wastewater on Surface Water Quality through Physico-Chemical and Benthic Macroinvertebrates Analyses. Water Sci. 2020, 34, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Ahmed, T.; Begum, S.; Huq, H. Water Pollution and the Textile Industry in Bangladesh: Flawed Corporate Practices or Restrictive Opportunities? Sustainability 2019, 11, 1951. [Google Scholar] [CrossRef] [Green Version]
- Kowsalya, R.; Noorjahan, C.M.; Karrunakaran, C.M.; Deecaraman, M.; Vijayalakshmi, M. physico-chemical characterisation of brewery effluent and its degradation using native fungus aspergillus niger. J. Ind. Pollut. Control. 2010, 26, 171–176. [Google Scholar]
Parameter | Description | Range | Rating | Weight |
---|---|---|---|---|
Depth to water table (D) | The unsaturated and partially saturated zone; the depth from the upper part of the ground to the water table. | <5 (m) | 10 | 5 |
5–10 (m) | 8 | |||
10–15 (m) | 6 | |||
15–20 (m) | 4 | |||
>20 (m) | 2 | |||
Recharge (R) | The amount of water per unit area of land that further gets infiltrated. | <34 (mm/year) | 1 | 4 |
34–64 (mm/year) | 4 | |||
>64 (mm/year) | 6 | |||
Aquifer media (A) | Porous, permeable and groundwater saturated geological formation. | Limestone-shale-marl intercalation | 4 | 3 |
Fractured dolerite | 5 | |||
Fractured limestone | 6 | |||
Soil media (S) | The upper very loose and weathered part of the subsoil. | Clay | 1 | 2 |
Clay loam | 3 | |||
Silty loam | 4 | |||
Sandy loam | 6 | |||
Topography (T) | The slope of the land surface representing the plain and mountainous area. | 0–2 (%) | 10 | 1 |
2–6 (%) | 9 | |||
6–12 (%) | 5 | |||
12–18 (%) | 3 | |||
>18 (%) | 1 | |||
Impact of vadose zone (I) | The upper and unsaturated zone as well as the confining part of the earth materials overlaying the water table. | Shale and clay | 3 | 5 |
Limestone-shale intercalation | 4 | |||
Fractured dolerite | 6 | |||
Hydraulic conductivity (C) | The movement nature of water within the aquifer, based on the hydraulic gradients and permeabilities. | <4.1 (m/day) | 1 | 3 |
4.1–12.2 (m/day) | 2 | |||
12.2–25 (m/day) | 4 | |||
25–76 (m/day) | 6 | |||
>76 (m/day) | 8 |
Parameter | Description | Range | Rating | Weight |
---|---|---|---|---|
Lineament density | All tectonic and non- tectonic fractures | 0.15–0.37 | 7 | 4 |
0.37–0.58 | 8 | |||
0.58–1.09 | 9 | |||
Land use and land cover | Human activities regarding land use | Bare land | 1 | 3 |
Natural vegetation | 2 | |||
Water bodies | 3 | |||
Built-up area | 7 | |||
Agricultural area | 8 |
Parameter | Theoretical Weight | Theoretical Weight (%) | Effective Weight (%) | |||
---|---|---|---|---|---|---|
Min | Max | Mean | SD | |||
D | 5 | 21.7 | 9.0 | 44.9 | 22.9 | 6.7 |
R | 4 | 17.4 | 3.2 | 30.0 | 12.7 | 7.5 |
A | 3 | 13.0 | 10.1 | 29.0 | 16.9 | 2.8 |
S | 2 | 8.6 | 16.6 | 19.6 | 8.7 | 4.2 |
T | 1 | 4.3 | 0.7 | 16.6 | 7.0 | 3.4 |
I | 5 | 21.7 | 11.9 | 41.6 | 23.7 | 5.8 |
C | 3 | 13.0 | 2.2 | 27.2 | 7.8 | 4.1 |
Parameters | Variation Index (%) | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
D | 0.8 | 5.1 | 1.4 | 1.1 |
R | 1.8 | 2.6 | 0.2 | 1.2 |
A | 0.6 | 2.4 | 0.4 | 0.4 |
S | 2.1 | 0.8 | 0.9 | 0.7 |
T | 2.2 | 0.2 | 1.2 | 0.5 |
I | 0.3 | 4.5 | 1.5 | 0.9 |
C | 1.9 | 2.1 | 1.0 | 0.6 |
Parameters | Variation Index (%) | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
DRASTIC | ||||
DRASIC | 2.2 | 0.2 | 1.2 | 0.5 |
DRASI | 4.9 | 1.7 | 2.7 | 1.1 |
DRAI | 9.2 | 1.6 | 4.8 | 2.1 |
RAI | 9.9 | 4.4 | 3.5 | 2.9 |
RA | 11.9 | 7.0 | 0.5 | 3.3 |
R | 15.7 | 11 | 1.5 | 7.5 |
Parameter | Theoretical Weight | Theoretical Weight (%) | Effective Weight (%) | |||
---|---|---|---|---|---|---|
Min | Max | Mean | SD | |||
D | 5 | 16.6 | 5.8 | 34.4 | 14.9 | 4.5 |
R | 4 | 13.3 | 2.2 | 21 | 8.4 | 5.2 |
A | 3 | 10 | 6.7 | 17.8 | 10.9 | 1.7 |
S | 2 | 6.6 | 1.1 | 13.1 | 5.6 | 2.6 |
T | 1 | 3.3 | 0.5 | 10.5 | 4.5 | 2.1 |
I | 5 | 16.6 | 8.2 | 28 | 15.4 | 4.0 |
C | 3 | 10 | 1.6 | 19.6 | 5.0 | 2.6 |
LU | 3 | 10 | 1.5 | 26.3 | 14.3 | 5.1 |
Lina | 4 | 13.3 | 13.3 | 36 | 20 | 2.9 |
Vulnerability Index Class | DRASTIC | Modified DRASTIC | ||
---|---|---|---|---|
Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
Low | 225.7 | 22.1 | 166.4 | 16.3 |
Medium | 302.8 | 29.6 | 266.8 | 26.1 |
High | 307.2 | 30.0 | 338.0 | 33.0 |
Very high | 187.6 | 18.3 | 252.2 | 24.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abera, K.A.; Gebreyohannes, T.; Abrha, B.; Hagos, M.; Berhane, G.; Hussien, A.; Belay, A.S.; Van Camp, M.; Walraevens, K. Vulnerability Mapping of Groundwater Resources of Mekelle City and Surroundings, Tigray Region, Ethiopia. Water 2022, 14, 2577. https://doi.org/10.3390/w14162577
Abera KA, Gebreyohannes T, Abrha B, Hagos M, Berhane G, Hussien A, Belay AS, Van Camp M, Walraevens K. Vulnerability Mapping of Groundwater Resources of Mekelle City and Surroundings, Tigray Region, Ethiopia. Water. 2022; 14(16):2577. https://doi.org/10.3390/w14162577
Chicago/Turabian StyleAbera, Kaleab Adhena, Tesfamichael Gebreyohannes, Berhane Abrha, Miruts Hagos, Gebremedhin Berhane, Abdelwassie Hussien, Ashebir Sewale Belay, Marc Van Camp, and Kristine Walraevens. 2022. "Vulnerability Mapping of Groundwater Resources of Mekelle City and Surroundings, Tigray Region, Ethiopia" Water 14, no. 16: 2577. https://doi.org/10.3390/w14162577