Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics
Abstract
:1. Introduction
2. General Framework: Some Key-Drivers
2.1. Contextual Factors: The Effect of Households’ Characteristics
2.1.1. Income
2.1.2. Age
2.1.3. Gender
2.1.4. Formal Education
2.1.5. Household Size
2.1.6. House Ownership
2.1.7. Housing Characteristics and Equipment
2.2. Environmental Factors
2.2.1. Weather and Climatic Variables
2.2.2. Seasonality
2.2.3. Water Quality
2.3. Psychological, Attitudinal, and Behavioral Factors
3. The Role of Public Policies
3.1. Pricing Policies
3.1.1. Tariff Schedule
3.1.2. Price Elasticities
3.1.3. Price Perception and Information
3.1.4. Price Reforms
3.1.5. Billing
3.2. Non-Pricing Policies
4. Brief Notes on Methodology
4.1. Approaching to Data Set
4.2. Dealing with Price Endogeneity
- Instrumental Variables (IV). Using instrumental variables to assess the price issue has been the standard procedure for many years (see Arbués et al. [1]). As Arbués et al. [1] explain, to obtain unbiased and consistent parameters under OLS there should not be correlation between the error term and any explanatory variable in the model, but under block tariffs, prices are endogenously determined by the quantity demanded. These authors also explore different approaches to this technique using two-stage least squares (2SLS) or three-stage least squares (3SLS). There are frequent examples in the literature that use IV [31,42,64,116,149].
- Control function (CF). Similar to IV, the control function estimation technique regresses the endogenous explanatory variable on the exogenous explanatory variables and a set of instruments, including the price and the error estimated in the first stage in the demand function [150]. This technique has previously been applied in some papers such as Carter and Milon [100] or Pérez-Urdiales et al. [21]. As Pérez-Urdiales et al. [21] indicate, under non-linear models, this technique is more appropriate than 2SLS.
- Discrete Continuous Choice (DCC). Another approach for dealing with price endogeneity is the discrete continuous choice (DCC) model [35,37,86,101,151]. DCC models, suggested by Hewitt and Hanemann [151], address the problem of endogeneity in water demand functions, assuming that consumers are informed about water tariffs. These models consider that the observed demand is the result of, first, the choice of the block of consumption and, second, a perception error which may place consumption on a different block from the one selected. Several authors have chosen DCC as their estimation method [37,86,106,152,153]. Interestingly, Vásquez Lavín et al. [152], who estimates a DCC model for the residential water demand by comparing six functional forms (log-log, full-log, log-quadratic, semi-log, linear, and Stone–Geary), concluded that the functional form chosen affects the values of both expected consumption and price elasticity. Some authors have extended DCC models to accommodate specific IBTs [153]. The main drawback of this method is assuming that consumers are fully informed about tariff structures, which is doubtful [31]. Recently, Wang et al. [101] proposed modelling consumer behavior based on a simple heuristic which generate more accurate predictions than modelling through DCC models.
4.3. Functional Forms: The Role of Stone–Geary Models
5. Experimental Economics and Nudging
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbués, F.; García-Valiñas, M.Á.; Martínez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J. Socio-Econ. 2003, 32, 81–102. [Google Scholar] [CrossRef]
- Worthington, A.C.; Hoffman, M. An empirical survey of residential water demand modelling. J. Econ. Surv. 2008, 22, 1–26. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Estimation of Water Demand in Developing Countries: An Overview. World Bank Res. Obs. 2010, 25, 263–294. [Google Scholar] [CrossRef]
- Reynaud, A. Modelling Household Water Demand in Europe. Insights from a Cross-Country Econometric Analysis of EU-28 Countries; Technical Report EUR 27310 EN; Joint Research Center: Ispra, Italy, 2015. [Google Scholar] [CrossRef]
- Reynaud, A.; Romano, G. Advances in the Economic Analysis of Residential Water Use: An Introduction. Water 2018, 10, 1162. [Google Scholar] [CrossRef]
- OECD. Social Issues in the Provision and Pricing of Water Services; Technical Report; OECD: Paris, France, 2003. [Google Scholar]
- OECD. Pricing Water Resources and Water Sanitation Services; Technical Report; OECD: Paris, France, 2010. [Google Scholar]
- EEA. Assessment of Cost Recovery through Water Pricing; Technical Report 16/2013; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Nauges, C.; Whittington, D. Evaluating the Performance of Alternative Municipal Water Tariff Designs: Quantifying the Tradeoffs between Equity, Economic Efficiency, and Cost Recovery. World Dev. 2017, 91, 125–143. [Google Scholar] [CrossRef]
- Massarutto, A. Servant of too many masters: Residential water pricing and the challenge of sustainability. Util. Policy 2020, 63, 101018. [Google Scholar] [CrossRef]
- Garcia-Valiñas, M.; Martínez-Espiñeira, R.; To, H. The Use of Non-pricing Instruments to Manage Residential Water Demand: What Have We Learned? In Understanding and Managing Urban Water in Transition; Grafton, Q., Daniell, K., Nauges, C., Rinaudo, J., Chan, N., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 15. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Miranda, J.J.; Price, M.K. The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment. Am. Econ. Rev. 2011, 101, 318–322. [Google Scholar] [CrossRef]
- Fielding, K.S.; Spinks, A.; Russell, S.; McCrea, R.; Stewart, R.; Gardner, J. An experimental test of voluntary strategies to promote urban water demand management. J. Environ. Manag. 2013, 114, 343–351. [Google Scholar] [CrossRef]
- Bernedo, M.; Ferraro, P.J.; Price, M. The Persistent Impacts of Norm-Based Messaging and Their Implications for Water Conservation. J. Consum. Policy 2014, 37, 437–452. [Google Scholar] [CrossRef]
- Rajapaksa, D.; Gifford, R.; Torgler, B.; Garcia-Valiñas, M.; Athukorala, W.; Managi, S.; Wilson, C. Do monetary and non-monetary incentives influence environmental attitudes and behavior? Evidence from an experimental analysis. Resour. Conserv. Recycl. 2019, 149, 168–176. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Social Norms Information Treatments in the Municipal Water Supply Sector: Some New Insights on Benefits and Costs. Water Econ. Policy 2019, 5, 1–40. [Google Scholar] [CrossRef]
- Brent, D.A.; Wichman, C.J. Do behavioral nudges interact with prevailing economic incentives? Pairing experimental and quasi-experimental evidence from water consumption. Work. Pap. 2020, 1–46. [Google Scholar] [CrossRef]
- Suárez-Varela, M. Modeling residential water demand: An approach based on household demand systems. J. Environ. Manag. 2020, 261, 109921. [Google Scholar] [CrossRef]
- Abu-Bakar, H.; Williams, L.; Hallett, S.H. A review of household water demand management and consumption measurement. J. Clean. Prod. 2021, 292, 125872. [Google Scholar] [CrossRef]
- Makki, A.A.; Stewart, R.A.; Beal, C.D.; Panuwatwanich, K. Novel bottom-up urban water demand forecasting model: Revealing the determinants, drivers and predictors of residential indoor end-use consumption. Resour. Conserv. Recycl. 2015, 95, 15–37. [Google Scholar] [CrossRef]
- Pérez-Urdiales, M.; García-Valiñas, M.A.; Martínez-Espiñeira, R. Responses to Changes in Domestic Water Tariff Structures: A Latent Class Analysis on Household-Level Data from Granada, Spain. Environ. Resour. Econ. 2016, 63, 167–191. [Google Scholar] [CrossRef]
- Roibás, D.; Garcia-Valiñas, M.A.; Fernandez-Llera, R. Measuring the Impact of Water Supply Interruptions on Household Welfare. Environ. Resour. Econ. 2019, 73, 159–179. [Google Scholar] [CrossRef]
- Reynaud, A.; Lanzanova, D.; Milovanović, M.B.; de Roo, A. Informing Water Policies with a Residential Water Demand Function: The Case of Serbia. Eur. J. Comp. Econ. 2016, 13, 247–266. [Google Scholar]
- Havranek, T.; Irsova, Z.; Vlach, T. Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases. Land Econ. 2018, 94, 259–283. [Google Scholar] [CrossRef]
- Russell, S.; Fielding, K. Water demand management research: A psychological perspective. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef]
- Romano, G.; Salvati, N.; Guerrini, A. Estimating the Determinants of Residential Water Demand in Italy. Water 2014, 6, 2929–2945. [Google Scholar] [CrossRef]
- Tanishita, M.; Sunaga, D. Heterogeneity and Temporal Stability of ResidentialWater Use Responsiveness to Price Change. Water 2021, 13, 2329. [Google Scholar] [CrossRef]
- Stitzel, B.; Rogers, C.L. Residential Water Demand Under Increasing Block Rate Structure: Conservation Conundrum? Water Resour. Manag. 2022, 36. [Google Scholar] [CrossRef]
- Whittington, D.; Nauges, C.; Fuente, D.; Wu, X. A diagnostic tool for estimating the incidence of subsidies delivered by water utilities in low- and medium-income countries, with illustrative simulations. Util. Policy 2015, 34, 70–81. [Google Scholar] [CrossRef]
- Rinaudo, J.D.; Neverre, N.; Montginoul, M. Simulating the Impact of Pricing Policies on Residential Water Demand: A Southern France Case Study. Water Resour. Manag. 2012, 26, 2057–2068. [Google Scholar] [CrossRef]
- Binet, M.E.; Carlevaro, F.; Paul, M. Estimation of Residential Water Demand with Imperfect Price Perception. Environ. Resour. Econ. 2014, 59, 561–581. [Google Scholar] [CrossRef]
- Ruijs, A.; Zimmermann, A.; van den Berg, M. Demand and distributional effects of water pricing policies. Ecol. Econ. 2008, 66, 506–516. [Google Scholar] [CrossRef]
- Schleich, J.; Hillenbrand, T. Determinants of residential water demand in Germany. Ecol. Econ. 2009, 68, 1756–1769. [Google Scholar] [CrossRef]
- Renzetti, S.; Dupont, D.P.; Chitsinde, T. An empirical examination of the distributional impacts of water pricing reforms. Util. Policy 2015, 34, 63–69. [Google Scholar] [CrossRef]
- Baerenklau, K.A.; Schwabe, K.A.; Dinar, A. The Residential Water Demand Effect of Increasing Block Rate Water Budgets. Land Econ. 2014, 90, 683–699. [Google Scholar] [CrossRef]
- Beal, C.D.; Stewart, R.A.; Fielding, K. A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. J. Clean. Prod. 2013, 60, 116–128. [Google Scholar] [CrossRef]
- Olmstead, S.M. Reduced-Form versus Structural Models of Water Demand under Nonlinear Prices. J. Bus. Econ. Stat. 2009, 1, 84–94. [Google Scholar] [CrossRef]
- Millock, K.; Nauges, C. Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy. Environ. Resour. Econ. 2011, 46, 539–565. [Google Scholar] [CrossRef]
- Martins, R.; Fortunato, A. Residential water demand under block rates—A Portuguese case study. Water Policy 2007, 9, 217–230. [Google Scholar] [CrossRef]
- Arbués, F.; Villanúa, I.; Barberán, R. Household size and residential water demand: An empirical approach. Aust. J. Agric. Resour. Econ. 2010, 54, 61–80. [Google Scholar] [CrossRef]
- García-Valiñas, M.A.; Martínez-Espiñeira, R.; González-Gómez, F. Affordability of residential water tariffs: Alternative measurement and explanatory factors in Southern Spain. J. Environ. Manag. 2010, 91, 2696–2706. [Google Scholar] [CrossRef]
- Monteiro, H.; Roseta-Palma, C. Pricing for scarcity? An efficiency analysis of increasing block tariffs. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Hoyos, D.; Artabe, A. Regional Differences in the Price Elasticity of Residential Water Demand in Spain. Water Resour. Manag. 2017, 31, 847–865. [Google Scholar] [CrossRef]
- Marzano, R.; Rouge, C.; Garrone, P.; Grilli, L.; Harou, J.J.; Pulido-Velazquez, M. Determinants of the price response to residential water tariffs: Meta-analysis and beyond. Environ. Model. Softw. 2018, 101, 236–248. [Google Scholar] [CrossRef]
- Rathnayaka, K.; Malano, H.; Arora, M.; George, B.; Maheepala, S.; Nawarathna, B. Prediction of urban residential end-use water demands by integrating known and unknown water demand drivers at multiple scales I: Model development. Resour. Conserv. Recycl. 2017, 117, 85–92. [Google Scholar] [CrossRef]
- Tong, Y.; Fan, L.; Niu, H. Water conservation awareness and practices in households receiving improved water supply: A gender-based analysis. J. Clean. Prod. 2017, 141, 947–955. [Google Scholar] [CrossRef]
- Torgler, B.; García-Valiñas, M.A. The determinants of individuals’ attitudes towards preventing environmental damage. Ecol. Econ. 2007, 63, 536–552. [Google Scholar] [CrossRef]
- Davies, K.; Doolan, C.; van den Honert, R.; Shi, R. Water-saving impacts of Smart Meter technology: An empirical 5 year, whole-of-community study in Sydney, Australia. Water Resour. Res. 2014, 50, 7348–7358. [Google Scholar] [CrossRef]
- Garcia-Valiñas, M.; Athukorala, W.; Wilson, C.; Torgler, B.; Gifford, R. Nondiscretionary residential water use: The impact of habits and water-efficient technologies. Aust. J. Agric. Resour. 2014, 58, 185–204. [Google Scholar] [CrossRef]
- Gilg, A.; Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 2006, 57, 400–414. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Ward, M.B.; To, H.; Kompas, T. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey. Water Resour. Res. 2011, 47, 1–14. [Google Scholar] [CrossRef]
- Maldonado-Devis, M.; Almenar-Llongo, V. Heterogeneity in Domestic Water Demand: An Application of Multilevel Analysis to the City of Valencia (Spain). Water 2021, 13, 3400. [Google Scholar] [CrossRef]
- Arbués, F.; Barberán, R.; Villanúa, I. Price impact on urban residential water demand: A dynamic panel data approach. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A. Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review. Environ. Model. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef]
- Jayarathna, L.; Rajapaksa, D.; Managi, S.; Athukorala, W.; Torgler, B.; Garcia-Valiñas, M.A.; Gifford, R.; Wilson, C. A GIS based spatial decision support system for analysing residential water demand: A case study in Australia. Sustain. Cities Soc. 2017, 32, 67–77. [Google Scholar] [CrossRef]
- Domene, E.; Saurí, D. Urbanisation and Water Consumption: Influencing Factors in the Metropolitan Region of Barcelona. Urban Stud. 2006, 43, 1605–1623. [Google Scholar] [CrossRef]
- Reynaud, A.; Pons, M.; Pesado, C. Household Water Demand in Andorra: Impact of Individual Metering and Seasonality. Water 2018, 10, 321. [Google Scholar] [CrossRef]
- Nauges, C.; Thomas, A. Privately Operated Water Utilities, Municipal Price Negotiation, and Estimation of Residential Water Demand: The Case of France. Land Econ. 2000, 76, 68–85. [Google Scholar] [CrossRef]
- Randolph, B.; Troy, P. Attitudes to conservation and water consumption. Environ. Sci. Policy 2008, 11, 441–455. [Google Scholar] [CrossRef]
- Martínez-Espiñeira, R. Residential Water Demand in the Northwest of Spain. Eur. Assoc. Environ. Resour. Econ. 2002, 21, 161–187. [Google Scholar] [CrossRef]
- Arbués, F.; Villanúa, I. Potential for Pricing Policies in Water Resource Management: Estimation of Urban Residential Water Demand in Zaragoza, Spain. Urban Stud. 2006, 43, 2421–2442. [Google Scholar] [CrossRef]
- Martínez-Espiñeira, R. An estimation of residential water demand using co-integration and error correction techniques. J. Appl. Econ. 2007, 10, 161–184. [Google Scholar] [CrossRef]
- Puri, R.; Maas, A. Evaluating the Sensitivity of Residential Water Demand Estimation to Model Specification and Instrument Choices. Water Resour. Res. 2020, 56, 1–14. [Google Scholar] [CrossRef]
- Dharmaratna, D.; Harris, E. Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka. Water Resour. Manag. 2012, 26, 2283–2299. [Google Scholar] [CrossRef]
- Yudhistira, M.H.; Sastiono, P.; Meliyawati, M. Exploiting unanticipated change in block rate pricing for water demand elasticities estimation: Evidence from Indonesian suburban area. Water Resour. Econ. 2020, 32, 1–15. [Google Scholar] [CrossRef]
- Roibás, D.; García-Valiñas, M.Á.; Wall, A. Measuring welfare losses from interruption and pricing as responses to water shortages: An application to the case of Seville. Environ. Resour. Econ. 2007, 38, 231–243. [Google Scholar] [CrossRef]
- Piper, S. Impact of water quality on municipal water price and residential water demand and implications for water supply benefits. Water Resour. Res. 2003, 39, 1127. [Google Scholar] [CrossRef]
- Zivin, J.G.; Neidell, M.; Schlenker, W. Water Quality Violations and Avoidance Behavior: Evidence from Bottled Water Consumption. Am. Econ. Rev. 2011, 101, 448–453. [Google Scholar] [CrossRef]
- Bontemps, C.; Nauges, C. Carafe ou bouteille? Le rôle de la qualité de l’environnement dans la décision du consommateur. Econ. Previs. 2009, 2, 61–79. [Google Scholar] [CrossRef]
- Corral-Verdugo, V.; Bechtel, R.B.; Fraijo-Sing, B. Environmental beliefs and water conservation: An empirical study. J. Environ. Psychol. 2003, 23, 247–257. [Google Scholar] [CrossRef]
- Maas, A.; Goemans, C.; Manning, D.; Kroll, S.; Arabi, M.; Rodriguez-McGoffin, M. Evaluating the effect of conservation motivations on residential water demand. J. Environ. Manag. 2017, 196, 394–401. [Google Scholar] [CrossRef]
- Arbués, F.; Bolsa, M.Á.; Villanúa, I. Which factors determine water saving behaviour? Evidence from Spanish households. Urban Water J. 2016, 13, 511–520. [Google Scholar] [CrossRef]
- Shahangian, S.A.; Tabesh, M.; Yazdanpanah, M. How can socio-psychological factors be related to water-efficiency intention and behaviors among Iranian residential water consumers? J. Environ. Manag. 2021, 288, 1–11. [Google Scholar] [CrossRef]
- Ibáñez-Rueda, N.; Guardiola, J.; González-Gómez, F. The role of nature contact and connectedness to nature as determinants of household water use: A case study from Spain. Water Environ. J. 2021, 36, 282–291. [Google Scholar] [CrossRef]
- Attari, S.Z. Perceptions of water use. Proc. Natl. Acad. Sci. USA 2014, 111, 5129–5134. [Google Scholar] [CrossRef]
- Dascher, E.D.; Kang, J.; Hustvedt, G. Water sustainability: Environmental attitude, drought attitude and motivation. J. Consum. Stud. 2014, 38, 467–474. [Google Scholar] [CrossRef]
- Ferrara, I. Residential Water Use. OECD J. 2008, 2008, 153–180. [Google Scholar] [CrossRef]
- Stavenhagen, M.; Buurman, J.; Tortajada, C. Saving water in cities: Assessing policies for residential water demand management in four cities in Europe. Cities 2018, 79, 187–195. [Google Scholar] [CrossRef]
- Barraque, B. Full cost recovery of water services and the 3T’s of OECD. Util. Policy 2020, 62, 100981. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Chu, L.; Wyrwoll, P. The paradox of water pricing: Dichotomies, dilemmas, and decisions. Oxf. Rev. Econ. Policy 2020, 36, 86–107. [Google Scholar] [CrossRef]
- Pérez-Urdiales, M.; Baerenklau, K.A. Learning to live within your (water) budget: Evidence from allocation-based rates. Resour. Energy Econ. 2019, 57, 205–221. [Google Scholar] [CrossRef]
- Arbués, F.; García-Valiñas, M. Water Tariffs in Spain. Oxf. Res. Encycl. Glob. Public Health 2020, 1–56. [Google Scholar] [CrossRef]
- Whittington, D.; Nauges, C. An Assessment of the Widespread Use of Increasing Block Tariffs in the Municipal Water Supply Sector. Oxf. Res. Encycl. Glob. Public Health 2020. [Google Scholar] [CrossRef]
- Wichman, C.J. Perceived price in residential water demand: Evidence from a natural experiment. J. Econ. Behav. Organ. 2014, 107, 308–323. [Google Scholar] [CrossRef]
- Nieswiadomy, M.L. Estimating urban residential water demand: Effects of price structure, conservation, and education. Water Resour. Res. 1992, 28, 609–615. [Google Scholar] [CrossRef]
- Olmstead, S.M.; Hanemann, M.; Stavins, R.N. Water Demand under Alternative Price Structures. J. Environ. Econ. Manag. 2007, 54, 181–198. [Google Scholar] [CrossRef]
- Ratnasiri, S.; Wilson, C.; Athukorala, W.; Garcia-Valiñas, M.A.; Torgler, B.; Gifford, R. Effectiveness of two pricing structures on urban water use and conservation: A quasi-experimental investigation. Environ. Econ. Policy Stud. 2018, 20, 547–560. [Google Scholar] [CrossRef]
- Sahin, O.; Bertone, E.; Beal, C. A systems approach for assessing water conservation potential through demand-based water tariffs. J. Clean. Prod. 2017, 148, 773–784. [Google Scholar] [CrossRef]
- Espey, M.; Espey, J.; Shaw, W.D. Price elasticity of residential demand for water: A meta-analysis. Water Resour. Res. 1997, 33, 1369–1374. [Google Scholar] [CrossRef]
- Dalhuisen, J.M.; Florax, R.; de Groot, H.; Nijkamp, P. Price and Income Elasticities of Residential Water Demand: A Meta-Analysis. Land Econ. 2003, 79, 292–308. [Google Scholar] [CrossRef]
- Sebri, M. A meta-analysis of residential water demand studies. Environ. Dev. Sustain. 2014, 16, 499–520. [Google Scholar] [CrossRef]
- Lee, J.; Tanverakul, S.A. Price elasticity of residential water demand in California. J. Water Supply Res. Technol. 2015, 64, 1–9. [Google Scholar] [CrossRef]
- Nauges, C.; Thomas, A. Long-run Study of Residential Water Consumption. Environ. Resour. Econ. 2003, 26, 25–43. [Google Scholar] [CrossRef]
- García-Valiñas, M.A. Efficiency and Equity in Natural Resources Pricing: A Proposal for Urban Water Distribution Service. Environ. Resour. Econ. 2005, 32, 183–204. [Google Scholar] [CrossRef]
- Gaudin, S. Effect of price information on residential water demand. Appl. Econ. 2006, 38, 383–393. [Google Scholar] [CrossRef]
- Clarke, A.J.; Colby, B.G.; Thompson, G. Household Water Demand Seasonal Elasticities: A Stone-Geary Model under an Increasing Block Rate Structure. Land Econ. 2017, 93, 608–630. [Google Scholar] [CrossRef]
- Wichman, C.J. Information provision and consumer behavior: A natural experiment in billing frequency. J. Public Econ. 2017, 152, 13–33. [Google Scholar] [CrossRef]
- Monteiro, H.; Martins, R.; Ramalho, J.; Ramalho, E. Are ill-informed residential water consumers less price-responsive? In Proceedings of the 6th World Congress of Environmental and Resource Economists, Gothenburg, Sweden, 25–29 June 2018. [Google Scholar]
- Brent, D.A.; Ward, M.B. Price perceptions in water demand. J. Environ. Econ. Manag. 2019, 98, 102266. [Google Scholar] [CrossRef]
- Carter, D.W.; Milon, J.W. Price Knowledge in Household Demand for Utility Services. Land Econ. 2005, 81, 265–283. [Google Scholar] [CrossRef]
- Wang, X.; Lee, J.; Yan, J.; Thompson, G.D. Testing the behavior of rationally inattentive consumers in a residential water market. J. Environ. Econ. Manag. 2018, 92, 344–359. [Google Scholar] [CrossRef]
- Reynaud, A. Private Sector Participation, Regulation and Social Policies in Water Supply in France. Oxf. Dev. Stud. 2010, 38, 219–239. [Google Scholar] [CrossRef]
- Howe, C.W.; Linaweaver, F.P. The impact of price on residential water demand and its relation to system design and price structure. Water Resour. Res. 1967, 3, 13–32. [Google Scholar] [CrossRef]
- Hung, M.F.; Chie, B.T. Residential Water Use: Efficiency, Affordability, and Price Elasticity. Water Resour. Manag. 2013, 27, 275–291. [Google Scholar] [CrossRef]
- Martínez-Espiñeira, R.; Nauges, C. Is all domestic water consumption sensitive to price control? Appl. Econ. 2004, 36, 1697–1703. [Google Scholar] [CrossRef]
- Strong, A.; Goemans, C. The impact of real-time quantity information on residential water demand. Water Resour. Econ. 2015, 10, 1–13. [Google Scholar] [CrossRef]
- Cook, J.; Brent, D. Do Households Respond to the Marginal or Average Price of Piped Water Services? Oxf. Res. Encycl. Glob. Public Health 2021. [Google Scholar] [CrossRef]
- Opaluch, J.J. Urban Residential Demand for Water in the United States: Further Discussion. Land Econ. 1982, 58, 225–227. [Google Scholar] [CrossRef]
- Opaluch, J.J. A Test of Consumer Demand Response to Water Prices: Reply. Land Econ. 1984, 60, 417–421. [Google Scholar] [CrossRef]
- Chicoine, D.L.; Deller, S.C.; Ramamurthy, G. Water Demand Estimation Under Block Rate Pricing: A Simultaneous Equation Approach. Water Resour. Res. 1986, 22, 859–863. [Google Scholar] [CrossRef]
- Kulshreshtha, S. Residential water demand in Saskatchewan Communities: Role played by block pricing system in water conservation. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 1996, 21, 139–155. [Google Scholar] [CrossRef]
- Nieswiadomy, M.; Molina, D. A note of price perception in water demand models. Land Econ. 1991, 67, 352–359. [Google Scholar] [CrossRef]
- Nieswiadomy, M.; Cobb, S.L. Impact of pricing structure selectivity on urban water demand. Contemp. Econ. Policy 1993, 11, 101–113. [Google Scholar] [CrossRef]
- Bell, D.R.; Griffin, R.C. An annual quasidifference approach to water price elasticity. Water Resour. Res. 2008, 44, 1–9. [Google Scholar] [CrossRef]
- Almendarez-Hernández, M.A.; Polanco, G.A.; Trejo, V.H.; Ortega-Rubio, A.; Morales, L.F.B. Residential Water Demand in a Mexican Biosphere Reserve: Evidence of the Effects of Perceived Price. Water 2016, 8, 428. [Google Scholar] [CrossRef]
- Cabral, R.; Ayala, L.; Delgado, V.H. Residential Water Demand and Price Perception under Increasing Block Rates. Econ. Bull. 2017, 37, 508–519. [Google Scholar]
- Shin, J.S. Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand. Rev. Econ. Stat. 1985, 67, 591–598. [Google Scholar] [CrossRef]
- Aubuchon, C.P.; Roberson, J.A. Price perception and nonprice controls under conservation rate structures. J.-Am. Water Work. Assoc. 2012, 104, E446–E456. [Google Scholar] [CrossRef]
- Nordin, J.A. A Proposed Modification of Taylor’s Demand Analysis: Comment. Bell J. Econ. 1976, 7, 719–721. [Google Scholar] [CrossRef]
- Taylor, L. The demand for electricity: A survey. Bell J. Econ. 1975, 6, 74–110. [Google Scholar] [CrossRef]
- Billings, R.B.; Agthe, D.E. Price Elasticities for Water: A Case of Increasing Block Rates. Land Econ. 1980, 56, 73–84. [Google Scholar] [CrossRef]
- Ito, K. Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing. Am. Econ. Rev. 2014, 104, 537–563. [Google Scholar] [CrossRef]
- Davidson, R.; MacKinnon, J.G. Estimation and Inference in Econometrics; Oxford University Press: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Nataraj, S.; Hanemann, W.M. Does marginal price matter? A regression discontinuity approach to estimating water demand. J. Environ. Econ. Manag. 2011, 61, 198–212. [Google Scholar] [CrossRef]
- Nieswiadomy, M.; Molina, D. Comparing residential water estimates under decreasing and increasing block rates using household data. Land Econ. 1989, 65, 280–289. [Google Scholar] [CrossRef]
- Liebman, J.B.; Zeckhauser, R.J. Schmeduling; Unpublished manuscript; Harvard University: Cambridge, MA, USA, 2004. [Google Scholar]
- Garcia-Valiñas, M.A.; Martinez-Espineira, R.; Suárez-Varela, M. Price and Consumption Misperception Profiles: The Role of Information in the Residential Water Sector. Environ. Resour. Econ. 2021, 80, 821–857. [Google Scholar] [CrossRef]
- Barberán, R.; López-Laborda, J.; Rodrigo, F. The Perception of Residential Water Tariff, Consumption, and Cost: Evidence of its Determinants Using Survey Data. Water Resour. Manag. 2022, 36, 2933–2952. [Google Scholar] [CrossRef]
- Zhang, B.; Fang, K.H.; Baerenklau, K.A. Have Chinese water pricing reforms reduced urban residential water demand? Water Resour. Res. 2017, 53, 5057–5069. [Google Scholar] [CrossRef]
- Olivier, A. Water tariffs and consumption drop: An evaluation of households’ response to a water tariff increase in Manaus, Brazil. Water Policy 2010, 12, 564–588. [Google Scholar] [CrossRef]
- Roseta-Palma, C.; Carvalho, M.; Correia, R. Nonlinear Pricing with Reference Dependence. Oxf. Res. Encycl. Glob. Public Health 2020, 1–13. [Google Scholar] [CrossRef]
- Gaudin, S.; Griffin, R.C.; Sickles, R. Demand Specification for Municipal Water Management: Evaluation of the Stone-Geary Form. Land Econ. 2001, 77, 399–422. [Google Scholar] [CrossRef]
- Kenney, D.S.; Goemans, C.; Klein, R.; Lowrey, J.; Reidy, K. Residential Water Demand Management: Lessons from Aurora, Colorado. J. Am. Water Resour. Assoc. 2008, 44, 192–207. [Google Scholar] [CrossRef]
- Renwick, M.E.; Green, R.D. Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies. J. Environ. Econ. Manag. 2000, 40, 37–55. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Ward, M.B. Prices versus Rationing: Marshallian Surplus and Mandatory Water Restrictions. Econ. Rec. 2008, 84, S57–S65. [Google Scholar] [CrossRef]
- Wang, J.; Chermak, J.M. Is less always more? Conservation, efficiency and water education programs. Ecol. Econ. 2021, 184, 106994. [Google Scholar] [CrossRef]
- Lee, M.; Tansel, B.; Balbin, M. Influence of residential water use efficiency measures on household water demand: A four year longitudinal study. Resour. Conserv. Recycl. 2011, 56, 1–6. [Google Scholar] [CrossRef]
- Lee, M.; Tansel, B.; Balbin, M. Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances. Water Resour. Manag. 2013, 27, 2531–2540. [Google Scholar] [CrossRef]
- Renwick, M.E.; Archibald, S.O. Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden? Land Econ. 1998, 74, 343–359. [Google Scholar] [CrossRef]
- Dieu-Hang, T.; Grafton, R.Q.; Martínez-Espiñeira, R.; Garcia-Valiñas, M. Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries. J. Environ. Manag. 2017, 197, 140–150. [Google Scholar] [CrossRef]
- Price, J.I.; Chermak, J.M.; Felardo, J. Low-flow appliances and household water demand: An evaluation of demand-side management policy in Albuquerque, New Mexico. J. Environ. Manag. 2014, 133, 37–44. [Google Scholar] [CrossRef]
- Campbell, H.; Johnson, R.; Larson, E. Prices, devices, people, or rules: The relative effectiveness of policy instruments in water conservation. Rev. Policy Res. 2004, 21, 637–662. [Google Scholar] [CrossRef]
- Bennear, L.S.; Taylor, L.; Lee, J. Participation Incentives, Rebound Effects and the Cost-Effectiveness of Rebates for Water-Efficient Appliances. Duke Environ. Econ. Work. Pap. 2011. [Google Scholar] [CrossRef]
- Pérez-Urdiales, M.; García-Valiñas, M.Á. Efficient water-using technologies and habits: A disaggregated analysis in the water sector. Ecol. Econ. 2016, 128, 117–129. [Google Scholar] [CrossRef]
- Jacobs, H.E.; Scheepers, H.M.; Sinske, S.A. Effect of land area on average annual suburban water demand. Water 2013, 39, 687–694. [Google Scholar] [CrossRef]
- House-Peters, L.A.; Chang, H. Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resour. Res. 2011, 47, W05401. [Google Scholar] [CrossRef]
- Mombeni, H.A.; Rezaei, S.; Nadarajah, S.; Emami, M. Estimation of Water Demand in Iran Based on SARIMA Models. Environ. Model. Assess. 2013, 18, 559–565. [Google Scholar] [CrossRef]
- Stewart, R.A.; Willis, R.; Giurco, D.; Panuwatwanich, K.; Capati, G. Web-based knowledge management system: Linking smart metering to the future of urban water planning. Aust. Plan. 2010, 47, 67–74. [Google Scholar] [CrossRef]
- Szabó, A. The value of free water: Analyzing South Africa’s free basic water policy. Econometrica 2015, 83, 1913–1961. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Control Function Methods in Applied Econometrics. J. Hum. Resour. 2015, 56, 420–445. [Google Scholar] [CrossRef]
- Hewitt, J.A.; Hanemann, W.M. A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing. Land Econ. 1995, 71, 173–192. [Google Scholar] [CrossRef]
- Vásquez Lavín, F.A.; Hernandez, J.I.; Ponce, R.D.; Orrego, S.A. Functional forms and price elasticities in a discrete continuous choice model of the residential water demand. Water Resour. Res. 2017, 53, 6296–6311. [Google Scholar] [CrossRef]
- Klassert, C.; Sigel, K.; Klauer, B.; Gawel, E. Increasing Block Tariffs in an Arid Developing Country: A Discrete/Continuous Choice Model of Residential Water Demand in Jordan. Water 2018, 10, 248. [Google Scholar] [CrossRef]
- Deaton, A.; Muellbauer, J. An Almost Ideal Demand System. Am. Econ. Rev. 1980, 70, 312–326. [Google Scholar]
- Nauges, C. How much water do residential users really need? An estimation of minimum water requirements for French households. In Proceedings of the XVII Annual Conference of the European Association of Environmental and Resource Economists, Amsterdam, The Netherlands, 24–27 June 2009. [Google Scholar]
- Schleich, J. How low can you go? Price responsiveness of German residential water demand. In Proceedings of the XVII Annual Conference of the European Association of Environmental and Resource Economists, Amsterdam, The Netherlands, 24–27 June 2009. [Google Scholar]
- Al-Qunaibet, M.H.; Johnston, R.S. Municipal Demand for Water in Kuwait: Methodological Issues and Empirical Results. Water Resour. Res. 1985, 21, 433–438. [Google Scholar] [CrossRef]
- Hung, M.F.; Chie, B.T.; Huang, T.H. Residential water demand and water waste in Taiwan. Environ. Econ. Policy Stud. 2017, 19, 249–268. [Google Scholar] [CrossRef]
- Fielding, K.S.; Russell, S.; Spinks, A.; Mankad, A. Determinants of household water conservation: The role of demographic, infrastructure, behavior, and psychosocial variables. Water Resour. Res. 2012, 48, 1–12. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Price, M.K. Using Nonpecuniary Strategies to Influence Behavior: Evidence from a Large-Scale Field Experiment. Rev. Econ. Stat. 2013, 95, 64–73. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Miranda, J.J. Heterogeneous treatment effects and mechanisms in information-based environmental policies: Evidence from a large-scale field experiment. Resour. Energy Econ. 2013, 35, 356–379. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar] [CrossRef]
- Moreu Carbonell, E. Integración de Nudges en las Políticas Ambientales; Revista Aragonesa de Administración Pública: Zaragoza, Spain, 2018; pp. 451–485. ISSN 1133-4797. [Google Scholar]
- Novak, J.; Melenhorst, M.; Micheel, I.; Pasini, C.; Fraternali, P.; Rizzoli, A. Integrating behavioural change and gamified incentive modelling for stimulating water saving. Environ. Model. Softw. 2018, 102, 120–137. [Google Scholar] [CrossRef]
- Schubert, C. Green nudges: Do they work? Are they ethical? Ecol. Econ. 2017, 132, 329–342. [Google Scholar] [CrossRef]
- Seyranian, V.; Sinatra, G.M.; Polikoff, M.S. Comparing Communication Strategies for Reducing Residential Water Consumption. J. Environ. Psychol. 2015, 41, 81–90. [Google Scholar] [CrossRef]
- Jessoe, K.; Lade, G.E.; Loge, F.; Spang, E. Residential water conservation during drought: Experimental evidence from three behavioral interventions. J. Environ. Econ. Manag. 2021, 110, 102519. [Google Scholar] [CrossRef]
- Tom, G.; Tauchus, G.; Williams, J.; Tong, S. The Role of Communicative Feedback in Successful Water Conservation Programs. Appl. Environ. Educ. Commun. 2011, 10, 80–90. [Google Scholar] [CrossRef]
- Strong, A.; Goemans, C. Quantity Uncertainty and Demand: The Case of Water Smart Reader Ownership. BE J. Econ. Anal. Policy 2014, 14, 669–694. [Google Scholar] [CrossRef]
- Miranda, J.J.; Datta, S.; Zoratto, L. Saving Water with a Nudge (or Two): Evidence from Costa Rica on the Effectiveness and Limits of Low-Cost Behavioral Interventions on Water Use. World Bank Econ. Rev. 2019, 34, 444–463. [Google Scholar] [CrossRef]
- Otaki, Y.; Honda, H.; Ueda, K. Historical Self-Comparison of Water Consumption as a Water Demand Management Tool. Water 2019, 11, 844. [Google Scholar] [CrossRef]
- Jaeger, C.M.; Schultz, P.W. Coupling social norms and commitments: Testing the underdetected nature of social influence. J. Environ. Psychol. 2017, 51, 199–208. [Google Scholar] [CrossRef]
- Schultz, P.W.; Messina, A.; Tronu, G.; Limas, E.F.; Gupta, R.; Estrada, M. Personalized Normative Feedback and the Moderating Role of Personal Norms: A Field Experiment to Reduce Residential Water Consumption. Environ. Behav. 2014, 48, 686–710. [Google Scholar] [CrossRef]
- Brent, D.A.; Lott, C.; Taylor, M.; Cook, J.; Rollins, K.; Stoddard, S. Are Normative Appeals Moral Taxes? Evidence from a Field Experiment on Water Conservation. 2017. Working Paper. Available online: http://faculty.bus.lsu.edu/papers/pap17_07.pdf (accessed on 27 June 2022).
- Torres, M.M.J.; Carlsson, F. Direct and spillover effects of a social information campaign on residential water-savings. J. Environ. Econ. Manag. 2018, 92, 222–243. [Google Scholar] [CrossRef]
- Willis, R.M.; Stewart, R.A.; Panuwatwanich, K.; Jones, S.; Kyriakides, A. Alarming visual display monitors affecting shower end use water and energy conservation in Australian residential households. Resour. Conserv. Recycl. 2010, 54, 1117–1127. [Google Scholar] [CrossRef]
- Otaki, Y.; Ueda, K.; Sakura, O. Effects of feedback about community water consumption on residential water conservation. J. Clean. Prod. 2017, 143, 719–730. [Google Scholar] [CrossRef]
- Bhanot, S.P. Rank and response: A field experiment on peer information and water use behavior. J. Econ. Psychol. 2017, 62, 155–172. [Google Scholar] [CrossRef]
- Obringer, R.; Kumar, R.; Nateghi, R. Managing the water-electricity demand nexus in a warming climate. Clim. Chang. 2020, 159, 233–252. [Google Scholar] [CrossRef]
Paper | Country | Year | Data | Opaluch’s Price Test | Shin (k) Price Test |
---|---|---|---|---|---|
Chicoine et al. [110] | Illinois, USA | 1982–1983 | 100 households a | No MP or AP rejected | — |
Kulshreshtha [111] | Canada | 1986 | 1384 households | No MP or AP rejected | — |
Nauges and Thomas [58] | France | 1988–1993 | 116 municipalities b | No MP or AP rejected | — |
Ruijs et al. [32] | Brazil | 1996–2004 | 39 municipalities a | No MP or AP rejected | — |
Nieswiadomy and Molina [112] | Texas, USA | 1981–1985 | 101 households b | — | −0.43–1.55 1 |
Nieswiadomy [85] | USA | 1984 | 430 water utilities | — | 0.88–1.26 |
Nieswiadomy and Cobb [113] | USA | 1984 | 229 cities | — | −0.32–−0.64 |
Carter and Milon [100] | Florida, USA | 1997–1999 | 742 households a | — | 0.40–1.31 2 |
Bell and Griffin [114] | Texas, USA | 1999–2003 | 734 households b | — | −0.76–−2.89 3 |
Monteiro and Roseta-Palma [42] | Portugal | 1998, 2000, 2002, 2005 | 278 municipalities a | — | −0.18 |
Binet et al. [31] | France | 2004 | 173 households a, c | — | 1.5 |
Almendarez-Hernández et al. [115] | Mexico | 2010–2014 | 7 municipalities b | — | 1.08 |
Cabral et al. [116] | Mexico | 2004 | 2407 households | — | 1.79–2.34 |
Puri and Maas [63] | Colorado, USA | 2006–2014 | 21,874 households a | — | 1.13 |
Average Consumption (L/day) | Estimated Threshold (L/day) | |||||
---|---|---|---|---|---|---|
Reference | Country | Year | Person | Household | Person | Household |
Al-Qunaibet and Johnston [157] | Kuwait | 1973–1981 | 153 | - | 42 | - |
Gaudin et al. [132] | Texas | 1981–1985 | 515–859 | - | 432–485 | - |
Martínez-Espiñeira and Nauges [105] | Spain | 1995–1999 | 213 | - | 157 | - |
García-Valiñas et al. [41] | Spain | 2005 | 171 | - | 112 | - |
Monteiro and Roseta-Palma [42] | Portugal | 1998, 2000, 2002, 2005 | - | 248 | - | 209 |
Dharmaratna and Harris [64] | Sri Lanka | 2001–2005 | 135 | 569 | 21–35 | 91–149 |
Hung and Chie [104] | Taiwan | 2005 | 287 | 905 | 77 | 243 |
Garcia-Valiñas et al. [49] | Australia | 2009–2010 | 137 | - | 92–103 | - |
Renzetti et al. [34] | Canada | 2000–2010 | 459 | 1033 | 365 | 810 |
Clarke et al. [96] | Arizona | 2001–2011 | - | 1152 | - | 942–1037 |
Hung et al. [158] | Taiwan | 2005 | 226 | 767 | 123–198 | - |
Roibás et al. [22] | Spain | 1991–2000 | 307 | 1154 | 197 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Valiñas, M.Á.; Suárez-Fernández, S. Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics. Water 2022, 14, 2536. https://doi.org/10.3390/w14162536
García-Valiñas MÁ, Suárez-Fernández S. Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics. Water. 2022; 14(16):2536. https://doi.org/10.3390/w14162536
Chicago/Turabian StyleGarcía-Valiñas, María Ángeles, and Sara Suárez-Fernández. 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics" Water 14, no. 16: 2536. https://doi.org/10.3390/w14162536
APA StyleGarcía-Valiñas, M. Á., & Suárez-Fernández, S. (2022). Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics. Water, 14(16), 2536. https://doi.org/10.3390/w14162536