Flood Models: An Exploratory Analysis and Research Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Approach: Bibliometric Analysis
2.2. Research Method
2.2.1. Phase I. Search and Selection of Data
2.2.2. Phase II. Pre-Processing of Data and Software
- ➢
- A combination of databases, was carried out through Bibliometrix 3.1 in RStudio programming language (version 4.1.2), obtaining a single record of the entire study area and using it for the bibliometric analysis [72].
- ➢
- Data cleaning, Microsoft Excel software (version 2021) used to read and modify the extracted “.xls” file, adjusting its content and eliminating non-useful information such as publications without authors and duplicate doi. In addition, this analysis focuses on publications in English because this language represents 92% of the entire database [73,74].
- ➢
- Bibliometric mapping, performed in Biblioshiny. It is a bibliometrix interface that allows the inclusion of bibliographic information from various databases such as Scopus, WoS, Dimensions, PubMed, and Cochrane [75]. This very recent package is also part of the R language, used for bibliometric and scientometric research [72,76,77,78].
2.2.3. Phase III. Analysis and Interpretation of Results
- (1)
- (2)
3. Results
3.1. Performance Analysis
3.1.1. Scientific Production and Development
- Period I (1972–1994) has negligible growth due to only 29 publications in the first 23 years of study, referring to a nearly constant introduction and production stage, focusing on the generation of stochastic models based on mathematical and probabilistic formulations applied to the principle of continuity [84,85]. These models initiated the flood risk analysis, using extreme values of rainfall and runoff and associating them to a return period through methods such as Poisson’s [86,87]. However, in discrete models, Bayesian methods were used for better accuracy of the results, to avoid a linear relationship between the calculations and the input parameters [88,89];
- Period II (1995–2005) has 114 publications and linear growth during the following eleven years of study. It focuses on a phase of development and evolution of modelling, focusing on urban areas and 1D-2D hydrodynamic simulations [90,91], allowing for analysis of their effects and establishing prevention measures [92]. Since this period, different computational tools and devices have been used, which facilitate the collection and resolution of data for better accuracy of the simulations, for example, the use of Light Detection And Ranging (LIDAR) [93,94], essential for the optical resolution and digital construction of the terrain; and
- Period III (2006–2021) has an exponential growth due to the development of 1993 publications in the last 16 years, focusing on the development of mathematical, distributed and hydraulic modelling. These models at the beginning of the study and this stage relates to 1D and 2D (fluvial and coastal) shallow flood simulations [95], risk analysis, socio-economic consequences and morphological and hydrological data of the watersheds [96], further including 3D analysis in coastal systems and estuarine environments [97,98]. Furthermore, this period highlights the technological growth and the use of remote sensing in a more progressive way than in the previous period, with more powerful computational tools and modelling methods used for a better quality of results [36,99], as well as media as data sources [100,101]. In this context, significant advances have been made over the last decade, highlighting its impact on society worldwide [102,103], focusing mainly on the analysis and assessment of flood risks caused by climate change [104]. These are addressed through flood mapping to identify the most susceptible areas (local/global) and provide guidelines for forecasting and future risk assessment [105,106].
3.1.2. Cross-Country Scientific Contribution
3.1.3. Featured Authors
3.2. Mapping of the Intellectual Structure
3.2.1. Author Keyword Conceptual Structure
3.2.2. Author Keyword Trend Topics
3.2.3. Trend Scientific Production
4. Discussion
4.1. Scientific Contribution by Country
4.2. Scientific Contribution by Authors
4.3. Analysis of Issues, Tools and Trends
5. Conclusions
- Flash floods have a more significant impact on urban areas due to the speed of propagation, economic damage, loss of human lives and triggering factors such as tsunamis or dam failures;
- Flood risk and hazard are analysis subjects through modelling for management and preventive strategies;
- Dam failures, with a focus on the impacts on urban areas due to their economic impact on society;
- Climate change is an important issue linked to flood modelling due to changes in the nature and the increased frequency of extreme events;
- Hydraulic and hydrodynamic modelling. Modelling topics focus on the controlling factors and aspects that cause floods. They also focus on flow dynamics in urban areas and river floodplains; and
- Machine learning is applied to flood modelling using a set of state-of-the-art data drive and black box algorithms to obtain reliable and accurate results, competing with physically based and hybrid (gray box) models.
- The computer tools with the most significant application in this field of study are:
- Geographic Information Systems (GIS) allowing the processing and mapping of flood-prone areas through hydrological and hydraulic data in a given area;
- Hec-Ras as an open-access multidisciplinary computational tool with a broad domain in modelling issues due to its versatility, free cost, and application in different dimensional approaches; and
- Remote sensing is essential for obtaining information that is difficult to access, improving the quality of results and extending the study area. Among the main derived products are Digital Elevation Models (DEM), soil type and land use maps, which are essential in developing simulations and analyses on various topics such as flooding, widely used in computational packages such as GIS and Hec-Ras.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loc, H.H.; Park, E.; Chitwatkulsiri, D.; Lim, J.; Yun, S.-H.; Maneechot, L.; Phuong, D.M. Local rainfall or river overflow? Re-evaluating the cause of the Great 2011 Thailand flood. J. Hydrol. 2020, 589, 125368. [Google Scholar] [CrossRef]
- Wasson, R.; Sundriyal, Y.; Chaudhary, S.; Jaiswal, M.K.; Morthekai, P.; Sati, S.; Juyal, N. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quat. Sci. Rev. 2013, 77, 156–166. [Google Scholar] [CrossRef]
- Auerbach, L.; Goodbred, S., Jr.; Mondal, D.; Wilson, C.; Ahmed, K.; Roy, K.; Steckler, M.; Small, C.; Gilligan, J.; Ackerly, B. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Chang. 2015, 5, 153–157. [Google Scholar] [CrossRef]
- Moreno, J.; Sánchez, J.; Espitia, H. Optimization of a fuzzy model used for the prevention of floods in homes surrounding zones of risk in the river Magdalena. J. Intell. Fuzzy Syst. 2020, 39, 4533–4546. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Fournet, S.; Andersson, J.C.; Calmanti, S.; van Weert, F.H.; Hattermann, F.F.; Paton, E.N. Flood projections within the Niger River Basin under future land use and climate change. Sci. Total Environ. 2016, 562, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Ologunorisa, T.E.; Adeyemo, A. Public Perception of Flood Hazard in the Niger Delta, Nigeria. Environmentalist 2005, 25, 39–45. [Google Scholar] [CrossRef]
- Pranzini, E.; Rosas, V.; Jackson, N.L.; Nordstrom, K.F. Beach changes from sediment delivered by streams to pocket beaches during a major flood. Geomorphology 2013, 199, 36–47. [Google Scholar] [CrossRef]
- Lim, K.Y.; Foo, K.Y. A State-of-the-Art Review on the Unique Characteristics, Key Driving Causes and Mitigation Measures of the World Catastrophic Flood Disasters. In A System Engineering Approach to Disaster Resilience, Proceedings of the Virtual Conference on Disaster Risk Reduction (VCDRR 2021), Online Conference, 15–20 March 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 229–246. [Google Scholar] [CrossRef]
- Kakinuma, K.; Puma, M.J.; Hirabayashi, Y.; Tanoue, M.; Baptista, E.A.; Kanae, S. Flood-induced population displacements in the world. Environ. Res. Lett. 2020, 15, 124029. [Google Scholar] [CrossRef]
- Arrighi, C. A Global Scale Analysis of River Flood Risk of UNESCO World Heritage Sites. Front. Water 2021, 3, 192. [Google Scholar] [CrossRef]
- Chou, C.; Huang, L.-F.; Tseng, L.; Tu, J.-Y.; Tan, P.-H. Annual Cycle of Rainfall in the Western North Pacific and East Asian Sector. J. Clim. 2009, 22, 2073–2094. [Google Scholar] [CrossRef]
- Shukla, R.P.; Shin, C. Distinguishing Spread Among Ensemble Members Between Drought and Flood Indian Summer Monsoon Years in the Past 58 Years (1958–2015) Reforecasts. Geophys. Res. Lett. 2020, 47, e2019GL086586. [Google Scholar] [CrossRef]
- Gadgil, S.; Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Polit. Wkly. 2006, 41, 4887–4895. [Google Scholar]
- Sanyal, J.; Lu, X.X. Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Hauer, M.E.; Hardy, D.; Kulp, S.A.; Mueller, V.; Wrathall, D.J.; Clark, P.U. Assessing population exposure to coastal flooding due to sea level rise. Nat. Commun. 2021, 12, 6900. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding—A Global Assessment. PLoS ONE 2015, 10, e0131375. [Google Scholar] [CrossRef]
- Johnston, J.; Cassalho, F.; Miesse, T.; Ferreira, C.M. Projecting the effects of land subsidence and sea level rise on storm surge flooding in Coastal North Carolina. Sci. Rep. 2021, 11, 21679. [Google Scholar] [CrossRef]
- Teodoro, T.A.; Reboita, M.S.; Llopart, M.; da Rocha, R.P.; Ashfaq, M. Climate Change Impacts on the South American Monsoon System and Its Surface–Atmosphere Processes Through RegCM4 CORDEX-CORE Projections. Earth Syst. Environ. 2021, 5, 825–847. [Google Scholar] [CrossRef]
- Ciprian, F.A.G.; Luque, A.V.L.; Polo, J.E.R. Gestión de la ayuda humanitaria ante inundaciones causadas por el Fenómeno del Niño, mediante la óptima localización de sensores en las quebradas y ríos—caso del desborde del río Piura. In Engineering, Integration, and Alliances for a Sustainable Development. Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy, Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education and Technology, Online Conference, 27–31 July 2020; LACCEI: Buenos Aires, Argentina, 2020. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, J.; Chen, C.; Ding, P. Impacts of fluvial flood on physical and biogeochemical environments in estuary–shelf continuum in the East China Sea. J. Hydrol. 2021, 598, 126441. [Google Scholar] [CrossRef]
- Xia, X.; Liang, Q.; Ming, X. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Adv. Water Resour. 2019, 132, 103392. [Google Scholar] [CrossRef]
- Lompi, M.; Tamagnone, P.; Pacetti, T.; Morbidelli, R.; Caporali, E. Impacts of Rainfall Data Aggregation Time on Pluvial Flood Hazard in Urban Watersheds. Water 2022, 14, 544. [Google Scholar] [CrossRef]
- Francipane, A.; Pumo, D.; Sinagra, M.; La Loggia, G.; Noto, L.V. A paradigm of extreme rainfall pluvial floods in complex urban areas: The flood event of 15 July 2020 in Palermo (Italy). Nat. Hazards Earth Syst. Sci. 2021, 21, 2563–2580. [Google Scholar] [CrossRef]
- Hjelmstad, A.; Shrestha, A.; Garcia, M.; Mascaro, G. Propagation of radar rainfall uncertainties into urban pluvial flood modeling during the North American monsoon. Hydrol. Sci. J. 2021, 66, 2232–2248. [Google Scholar] [CrossRef]
- Zhai, X.; Guo, L.; Liu, R.; Zhang, Y. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern. Nat. Hazards 2018, 94, 605–625. [Google Scholar] [CrossRef]
- Philipp, A.; Grundmann, J. Integrated Modeling System for Flash Flood Routing in Ephemeral Rivers under the Influence of Groundwater Recharge Dams. J. Hydraul. Eng. 2013, 139, 1234–1246. [Google Scholar] [CrossRef]
- Perucca, L.P.; Angillieri, M.Y.E. Evolution of a debris-rock slide causing a natural dam: The flash flood of Río Santa Cruz, Province of San Juan—November 12, 2005. Nat. Hazards 2009, 50, 305–320. [Google Scholar] [CrossRef]
- Idier, D.; Pedreros, R.; Rohmer, J.; Le Cozannet, G. The Effect of Stochasticity of Waves on Coastal Flood and Its Variations with Sea-level Rise. J. Mar. Sci. Eng. 2020, 8, 798. [Google Scholar] [CrossRef]
- Esteban, M.; Takagi, H.; Mikami, T.; Aprilia, A.; Fujii, D.; Kurobe, S.; Utama, N.A. Awareness of coastal floods in impoverished subsiding coastal communities in Jakarta: Tsunamis, typhoon storm surges and dyke-induced tsunamis. Int. J. Disaster Risk Reduct. 2017, 23, 70–79. [Google Scholar] [CrossRef]
- Favaretto, C.; Martinelli, L.; Ruol, P. Coastal Flooding Hazard Due to Overflow Using a Level II Method: Application to the Venetian Littoral. Water 2019, 11, 134. [Google Scholar] [CrossRef]
- Nagumo, N.; Ohara, M.; Kuribayashi, D.; Sawano, H. The 2015 Flood Impact due to the Overflow and Dike Breach of Kinu River in Joso City, Japan. J. Disaster Res. 2016, 11, 1112–1127. [Google Scholar] [CrossRef]
- Fares, Y.R.; Herbertson, J.G. Behaviour of flow in a channel bend with a side overflow (flood relief) channel. J. Hydraul. Res. 1993, 31, 383–402. [Google Scholar] [CrossRef]
- Scruton, D.A.; Clarke, K.D.; Roberge, M.M.; Kelly, J.F.; Dawe, M.B. A case study of habitat compensation to ameliorate impacts of hydroelectric development: Effectiveness of re-watering and habitat enhancement of an intermittent flood overflow channel. J. Fish Biol. 2005, 67, 244–260. [Google Scholar] [CrossRef]
- Abbasi, H.; Zeynolabedin, A.; Bidhendi, G.N. Assessment of combined sewer overflows impacts under flooding in coastal cities. J. Water Clim. Chang. 2021, 12, 2460–2478. [Google Scholar] [CrossRef]
- Tao, J.; Li, Z.; Peng, X.; Ying, G. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control. Front. Environ. Sci. Eng. 2017, 11, 11. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Vargas-Ormaza, V.; Apolo-Masache, B.; Jaya-Montalvo, M. A Conceptual Socio-Hydrogeological Model Applied to Sustainable Water Management. Case Study of the Valdivia River Basin, Southwestern Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 1275–1285. [Google Scholar] [CrossRef]
- Zhang, Y. Using LiDAR-DEM based rapid flood inundation modelling framework to map floodplain inundation extent and depth. J. Geogr. Sci. 2020, 30, 1649–1663. [Google Scholar] [CrossRef]
- Sanders, B.F. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 2007, 30, 1831–1843. [Google Scholar] [CrossRef]
- Elfeki, A.; Masoud, M.; Niyazi, B. Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia. Nat. Hazards 2017, 85, 87–109. [Google Scholar] [CrossRef]
- Ayoub, V.; Delenne, C.; Chini, M.; Finaud-Guyot, P.; Mason, D.; Matgen, P.; Maria-Pelich, R.; Hostache, R. A porosity-based flood inundation modelling approach for enabling faster large scale simulations. Adv. Water Resour. 2022, 162, 104141. [Google Scholar] [CrossRef]
- Ferrari, A.; Viero, D.P.; Vacondio, R.; Defina, A.; Mignosa, P. Flood inundation modeling in urbanized areas: A mesh-independent porosity approach with anisotropic friction. Adv. Water Resour. 2019, 125, 98–113. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Herrera-Borja, P.; Chávez-Moncayo, M.; Arévalo-Ochoa, J. Design of a Technical-Artisanal Dike for Surface Water Storage and Artificial Recharge of the Manglaralto Coastal Aquifer. Santa Elena Parish, Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 515–523. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M. Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [Google Scholar] [CrossRef]
- Praskievicz, S.; Carter, S.; Dhondia, J.; Follum, M. Flood-inundation modeling in an operational context: Sensitivity to topographic resolution and Manning’s n. J. Hydroinform. 2020, 22, 1338–1350. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Amarnath, G. Applications of Satellite-Based Rainfall Estimates in Flood Inundation Modeling—A Case Study in Mundeni Aru River Basin, Sri Lanka. Remote Sens. 2017, 9, 998. [Google Scholar] [CrossRef]
- Sharma, V.C.; Regonda, S.K. Two-Dimensional Flood Inundation Modeling in the Godavari River Basin, India—Insights on Model Output Uncertainty. Water 2021, 13, 191. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván, F.; Morante-Carballo, F.; de Valgas, C.L.-F.; Apolo-Masache, B.; Heredia, J. Flow and Transport Numerical Model of a Coastal Aquifer Based on the Hydraulic Importance of a Dyke and Its Impact on Water Quality: Manglaralto—Ecuador. Water 2021, 13, 443. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F.; Quesada-Román, A.; Apolo-Masache, B. Worldwide Research Trends in Landslide Science. Int. J. Environ. Res. Public Health 2021, 18, 9445. [Google Scholar] [CrossRef] [PubMed]
- Díez-Herrero, A.; Garrote, J. Flood Risk Analysis and Assessment, Applications and Uncertainties: A Bibliometric Review. Water 2020, 12, 2050. [Google Scholar] [CrossRef]
- Da Silva, L.B.L.; Alencar, M.H.; de Almeida, A.T. Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics. Int. J. Disaster Risk Reduct. 2020, 50, 101865. [Google Scholar] [CrossRef]
- Emmer, A. GLOFs in the WOS: Bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979–2016). Nat. Hazards Earth Syst. Sci. 2018, 18, 813–827. [Google Scholar] [CrossRef]
- Crossan, M.M.; Apaydin, M. A Multi-Dimensional Framework of Organizational Innovation: A Systematic Review of the Literature. J. Manag. Stud. 2010, 47, 1154–1191. [Google Scholar] [CrossRef]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Phoong, S.Y.; Khek, S.L. The Bibliometric Analysis on Finite Mixture Model. SAGE Open 2022, 12, 1010. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, K.; Liu, Z.; He, L. Research progress and knowledge system of world heritage tourism: A bibliometric analysis. Heritage Sci. 2022, 10, 42. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide Research. Geosciences 2020, 10, 347. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Al-Jabi, S.W.; Amer, R.; Shakhshir, M.; Shahwan, M.; Jairoun, A.A.; Akkawi, M.; Abu Taha, A. Global research trends on the links between the gut microbiome and cancer: A visualization analysis. J. Transl. Med. 2022, 20, 83. [Google Scholar] [CrossRef]
- Mishra, H.G.; Pandita, S.; Bhat, A.A.; Mishra, R.K.; Sharma, S. Tourism and carbon emissions: A bibliometric review of the last three decades: 1990–2021. Tour. Rev. 2022, 77, 636–658. [Google Scholar] [CrossRef]
- Alam Khan, P.; Johl, S.K.; Akhtar, S.; Asif, M.; Salameh, A.A.; Kanesan, T. Open Innovation of Institutional Investors and Higher Education System in Creating Open Approach for SDG-4 Quality Education: A Conceptual Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 49. [Google Scholar] [CrossRef]
- Jiménez-Islas, D.; Pérez-Romero, M.E.; Río-Rama, M.D.L.C.D.; Flores-Romero, M.B. Mapping Research Trends in Publications Related to Bio-Jet Fuel: A Scientometric Review. Int. J. Des. Nat. Ecodynam. 2022, 17, 1–8. [Google Scholar] [CrossRef]
- Solin, L.; Skubincan, P. Flood risk assessment and management: Review of concepts, definitions and methods. Geogr. J. 2013, 65, 23–44. [Google Scholar]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; López-Cózar, E.D. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Pasko, O.; Chen, F.; Oriekhova, A.; Brychko, A.; Shalyhina, I. Mapping the Literature on Sustainability Reporting: A Bibliometric Analysis Grounded in Scopus and Web of Science Core Collection. Eur. J. Sustain. Dev. 2021, 10, 303. [Google Scholar] [CrossRef]
- Kawuki, J.; Yu, X.; Musa, T.H. Bibliometric Analysis of Ebola Research Indexed in Web of Science and Scopus (2010–2020). BioMed. Res. Int. 2020, 2020, 5476567. [Google Scholar] [CrossRef]
- Echchakoui, S. Why and how to merge Scopus and Web of Science during bibliometric analysis: The case of sales force literature from 1912 to 2019. J. Mark. Anal. 2020, 8, 165–184. [Google Scholar] [CrossRef]
- Vera-Baceta, M.-A.; Thelwall, M.; Kousha, K. Web of Science and Scopus language coverage. Scientometrics 2019, 121, 1803–1813. [Google Scholar] [CrossRef]
- Da Silveira Barcellos, D.; Procopiuck, M.; Bollmann, H.A. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. Sci. Total Environ. 2022, 809, 151128. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Mora-Frank, C.; Berrezueta, E. Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research. Water 2022, 14, 1082. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Pico-Saltos, R.; Carrión-Mero, P.; Montalván-Burbano, N.; Garzás, J.; Redchuk, A. Research Trends in Career Success: A Bibliometric Review. Sustainability 2021, 13, 4625. [Google Scholar] [CrossRef]
- Najmi, A.; Rashidi, T.H.; Abbasi, A.; Waller, S.T. Reviewing the transport domain: An evolutionary bibliometrics and network analysis. Scientometrics 2017, 110, 843–865. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and Geosites: A Bibliometric Analysis and Literature Review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Rodríguez-Soler, R.; Uribe-Toril, J.; Valenciano, J.D.P. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Maniu, I.; Costea, R.; Maniu, G.; Neamtu, B.M. Inflammatory Biomarkers in Febrile Seizure: A Comprehensive Bibliometric, Review and Visualization Analysis. Brain Sci. 2021, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, V.; Del Gaudio, G.; Sepe, F.; Luongo, S. Destination Resilience and Innovation for Advanced Sustainable Tourism Management: A Bibliometric Analysis. Sustainability 2021, 13, 12632. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- De Sousa, F.D.B. A simplified bibliometric mapping and analysis about sustainable polymers. Mater. Today Proc. 2022, 49, 2025–2033. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Velastegui-Montoya, A.; Gurumendi-Noriega, M.; Morante-Carballo, F.; Adami, M. Worldwide Research on Land Use and Land Cover in the Amazon Region. Sustainability 2021, 13, 6039. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Jácome-Francis, K. Worldwide Research Analysis on Natural Zeolites as Environmental Remediation Materials. Sustainability 2021, 13, 6378. [Google Scholar] [CrossRef]
- De Solla Price, D.J. Little Science, Big Science—And Beyond; Columbia University Press: New York, NY, 1963. [Google Scholar]
- Chow, V.T.; Prasad, T. Theory of stochastic modeling of watershed systems. J. Hydrol. 1972, 15, 261–284. [Google Scholar] [CrossRef]
- Ekanayake, S.T.; Cruise, J.F. Comparisons of Weibull- and exponential-based partial duration stochastic flood models. Stoch. Hydrol. Hydraul. 1993, 7, 283–297. [Google Scholar] [CrossRef]
- Nachtnebel, H.; Konecny, F. Risk analysis and time-dependent flood models. J. Hydrol. 1987, 91, 295–318. [Google Scholar] [CrossRef]
- Konecny, F.; Nachtnebel, H. Extreme value processes and the evaluation of risk in flood analysis. Appl. Math. Model. 1985, 9, 11–15. [Google Scholar] [CrossRef]
- Bates, B.C. Nonlinear, discrete flood event models, 2. Assessment of statistical nonlinearity. J. Hydrol. 1988, 99, 77–89. [Google Scholar] [CrossRef]
- Bates, B.C.; Townley, L.R. Nonlinear, discrete flood event models, 1. Bayesian estimation of parameters. J. Hydrol. 1988, 99, 61–76. [Google Scholar] [CrossRef]
- Hsu, M.; Chen, S.; Chang, T. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef]
- Mark, O.; Weesakul, S.; Apirumanekul, C.; Aroonnet, S.; Djordjevic, S. Potential and limitations of 1D modelling of urban flooding. J. Hydrol. 2004, 299, 284–299. [Google Scholar] [CrossRef]
- Vis, M.; Klijn, F.; de Bruijn, K.; Van Buuren, M. Resilience strategies for flood risk management in the Netherlands. Int. J. River Basin Manag. 2003, 1, 33–40. [Google Scholar] [CrossRef]
- Casas, A.; Benito, G.; Thorndycraft, V.R.; Rico, M. The topographic data source of digital terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landf. 2006, 31, 444–456. [Google Scholar] [CrossRef]
- Priestnall, G.; Jaafar, J.; Duncan, A. Extracting urban features from LiDAR digital surface models. Comput. Environ. Urban Syst. 2000, 24, 65–78. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Scawthorn, C.; Flores, P.; Blais, N.; Seligson, H.; Tate, E.; Chang, S.; Mifflin, E.; Thomas, W.; Murphy, J.; Jones, C.; et al. HAZUS-MH Flood Loss Estimation Methodology. II. Damage and Loss Assessment. Nat. Hazards Rev. 2006, 7, 72–81. [Google Scholar] [CrossRef]
- Safavi, S.; Saghafian, B.; Hosseini, S.A. Characterizing flow pattern and salinity using the 3D MIKE 3 model: Urmia Lake case study. Arab. J. Geosci. 2020, 13, 115. [Google Scholar] [CrossRef]
- Fauzah, S.; Tarya, A.; Ningsih, N.S. Three-Dimensional Numerical Modelling of Tidal Current in Balikpapan Bay Using Delft 3D. IOP Conf. Series Earth Environ. Sci. 2021, 925, 12051. [Google Scholar] [CrossRef]
- Mason, D.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H. Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2014, 28, 150–159. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Emrich, C.T.; Guo, D. A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods. Cartogr. Geogr. Inf. Sci. 2018, 45, 97–110. [Google Scholar] [CrossRef]
- Smith, L.S.; Liang, Q.; James, P.; Lin, W. Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J. Flood Risk Manag. 2017, 10, 370–380. [Google Scholar] [CrossRef]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef]
- Rudd, A.C.; Kay, A.L.; Wells, S.C.; Aldridge, T.; Cole, S.J.; Kendon, E.J.; Stewart, E.J. Investigating potential future changes in surface water flooding hazard and impact. Hydrol. Process. 2020, 34, 139–149. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global Drivers of Future River Flood Risk. Nat. Clim. Change 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and Mining Towards the Development of Geotourism: A Global Perspective. Int. J. Des. Nat. Ecodynam. 2021, 16, 191–201. [Google Scholar] [CrossRef]
- Yin, J.; Lin, N.; Yu, D. Coupled modeling of storm surge and coastal inundation: A case study in New York City during Hurricane Sandy. Water Resour. Res. 2016, 52, 8685–8699. [Google Scholar] [CrossRef]
- Emerton, R.E.; Stephens, E.M.; Pappenberger, F.; Pagano, T.C.; Weerts, A.H.; Wood, A.W.; Salamon, P.; Brown, J.D.; Hjerdt, N.; Donnelly, C.; et al. Continental and global scale flood forecasting systems. Wiley Interdiscip. Rev. Water 2016, 3, 391–418. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of present and future flood risk in the conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, Q.; Yu, D.; Lin, N.; Kubanek, J.; Ma, G.; Liu, M.; Pepe, A. Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. J. Hydrol. 2019, 571, 593–604. [Google Scholar] [CrossRef]
- Wang, W.; Yang, X.; Yao, T. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, A.S.; Fu, G.; Djordjević, S.; Zhang, C.; Savić, D.A. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Trigg, M.A.; Birch, C.E.; Neal, J.; Bates, P.; Smith, A.; Sampson, C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; et al. The credibility challenge for global fluvial flood risk analysis. Environ. Res. Lett. 2016, 11, 094014. [Google Scholar] [CrossRef]
- Chen, C.; Lin, Z.; Beardsley, R.C.; Shyka, T.; Zhang, Y.; Xu, Q.; Qi, J.; Lin, H.; Xu, D. Impacts of sea level rise on future storm-induced coastal inundations over Massachusetts coast. Nat. Hazards 2021, 106, 375–399. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.Y.A.; Switzer, A.D.; Dominey-Howes, D.; Aitchison, J.; Zong, Y. Written records of historical tsunamis in the northeastern South China Sea—Challenges associated with developing a new integrated database. Nat. Hazards Earth Syst. Sci. 2010, 10, 1793–1806. [Google Scholar] [CrossRef]
- Wu, H.; Kimball, J.S.; Zhou, N.; Alfieri, L.; Luo, L.; Du, J.; Huang, Z. Evaluation of real-time global flood modeling with satellite surface inundation observations from SMAP. Remote Sens. Environ. 2019, 233, 111360. [Google Scholar] [CrossRef]
- Patra, S.K.; Bhattacharya, P.; Verma, N. Bibliometric Study of Literature on Bibliometrics. DESIDOC Bull. Inf. Technol. 2006, 26, 27–32. [Google Scholar] [CrossRef]
- Briones-Bitar, J.; Carrión-Mero, P.; Montalván-Burbano, N.; Morante-Carballo, F. Rockfall Research: A Bibliometric Analysis and Future Trends. Geosciences 2020, 10, 403. [Google Scholar] [CrossRef]
- Stewart, M.; Bates, P.; Anderson, M.; Price, D.; Burt, T. Modelling floods in hydrologically complex lowland river reaches. J. Hydrol. 1999, 223, 85–106. [Google Scholar] [CrossRef]
- Sampson, C.C.; Smith, A.M.; Bates, P.; Neal, J.; Alfieri, L.; Freer, J. A high-resolution global flood hazard model. Water Resour. Res. 2015, 51, 7358–7381. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Satoh, H.; Lin, S.-Y. Japanese Lung Cancer Research Trends and Performance in Science Citation Index. Intern. Med. 2010, 49, 2219–2228. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, Z.; Qiu, J. Global Isotopic Hydrograph Separation Research History and Trends: A Text Mining and Bibliometric Analysis Study. Water 2021, 13, 2529. [Google Scholar] [CrossRef]
- Overton, I.C. Modelling floodplain inundation on a regulated river: Integrating GIS, remote sensing and hydrological models. River Res. Appl. 2005, 21, 991–1001. [Google Scholar] [CrossRef]
- Komolafe, A.A. Integrated methodology for urban flood inundation modeling: A case study of Ichinomiya River Basin, Japan. Model. Earth Syst. Environ. 2021, 8, 2001–2010. [Google Scholar] [CrossRef]
- Teng, J.; Vaze, J.; Dutta, D.; Marvanek, S. Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM. Water Resour. Manag. 2015, 29, 2619–2636. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Fijko, R.; Labant, S.; Weiss, E.; Markovič, G.; Weiss, R. Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia. J. Clean. Prod. 2019, 212, 109–118. [Google Scholar] [CrossRef]
- Rangari, V.A.; Umamahesh, N.; Patel, A.K. Flood-hazard risk classification and mapping for urban catchment under different climate change scenarios: A case study of Hyderabad city. Urban Clim. 2021, 36, 100793. [Google Scholar] [CrossRef]
- Yang, T.; Sun, F.; Gentine, P.; Liu, W.; Wang, H.; Yin, J.; Du, M.; Liu, C. Evaluation and machine learning improvement of global hydrological model-based flood simulations. Environ. Res. Lett. 2019, 14, 114027. [Google Scholar] [CrossRef]
- Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Sidhu, A.; Pruncu, C. Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability 2021, 13, 5617. [Google Scholar] [CrossRef]
- Fatehi, F.; Hassandoust, F.; Ko, R.K.; Akhlaghpour, S. General Data Protection Regulation (GDPR) in Healthcare: Hot Topics and Research Fronts. Stud. Health Technol. Inform. 2020, 270, 1118–1122. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 1: Mesh resolution effects. Hydrol. Process. 2006, 20, 1541–1565. [Google Scholar] [CrossRef]
- Chen, J.; Hill, A.A.; Urbano, L.D. A GIS-based model for urban flood inundation. J. Hydrol. 2009, 373, 184–192. [Google Scholar] [CrossRef]
- Gallegos, H.A.; Schubert, J.E.; Sanders, B.F. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California. Adv. Water Resour. 2009, 32, 1323–1335. [Google Scholar] [CrossRef]
- Sanders, B.F.; Schubert, J.E.; Detwiler, R.L. ParBreZo: A parallel, unstructured grid, Godunov-type, shallow-water code for high-resolution flood inundation modeling at the regional scale. Adv. Water Resour. 2010, 33, 1456–1467. [Google Scholar] [CrossRef]
- Schubert, J.E.; Sanders, B.F. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Adv. Water Resour. 2012, 41, 49–64. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Gheshlaghi, H.A.; Bui, D.T. An integrated approach of GIS and hybrid intelligence techniques applied for flood risk modeling. J. Environ. Plan. Manag. 2021, 64, 485–516. [Google Scholar] [CrossRef]
- Bozza, A.; Durand, A.; Confortola, G.; Soncini, A.; Allenbach, B.; Bocchiola, D. Potential of remote sensing and open street data for flood mapping in poorly gauged areas: A case study in Gonaives, Haiti. Appl. Geomat. 2016, 8, 117–131. [Google Scholar] [CrossRef]
- Tang, L.; Titov, V.V.; Chamberlin, C.D. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J. Geophys. Res. Earth Surf. 2009, 114, C12025. [Google Scholar] [CrossRef]
- Grilli, S.T.; Taylor, O.-D.S.; Baxter, C.D.; Maretzki, S. A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Mar. Geol. 2009, 264, 74–97. [Google Scholar] [CrossRef]
- Synolakis, C.E.; Bernard, E.N.; Titov, V.V.; Kânoğlu, U.; González, F.I. Validation and Verification of Tsunami Numerical Models. Pure Appl. Geophys. 2008, 165, 2197–2228. [Google Scholar] [CrossRef]
- Williams, D.M.; Erikson, L.H. Knowledge Gaps Update to the 2019 IPCC Special Report on the Ocean and Cryosphere: Prospects to Refine Coastal Flood Hazard Assessments and Adaptation Strategies with At-Risk Communities of Alaska. Front. Clim. 2021, 3, 761439. [Google Scholar] [CrossRef]
- Swain, D.L.; Wing, O.E.J.; Bates, P.D.; Done, J.M.; Johnson, K.A.; Cameron, D.R. Increased Flood Exposure Due to Climate Change and Population Growth in the United States. Earth’s Future 2020, 8, 1778. [Google Scholar] [CrossRef]
- Judi, D.R.; Rakowski, C.L.; Waichler, S.R.; Feng, Y.; Wigmosta, M.S. Integrated Modeling Approach for the Development of Climate-Informed, Actionable Information. Water 2018, 10, 775. [Google Scholar] [CrossRef]
- Miura, Y.; Qureshi, H.; Ryoo, C.; Dinenis, P.C.; Li, J.; Mandli, K.T.; Deodatis, G.; Bienstock, D.; Lazrus, H.; Morss, R. A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise. Nat. Hazards 2021, 107, 1821–1843. [Google Scholar] [CrossRef]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Pappenberger, F.; Beven, K.J.; Hunter, N.M.; Bates, P.; Gouweleeuw, B.T.; Thielen, J.; De Roo, A.P.J. Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci. 2005, 9, 381–393. [Google Scholar] [CrossRef]
- Neal, J.; Villanueva, I.; Wright, N.; Willis, T.; Fewtrell, T.; Bates, P. How much physical complexity is needed to model flood inundation? Hydrol. Process. 2011, 26, 2264–2282. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A.C.; Bates, P.D. A first large-scale flood inundation forecasting model. Water Resour. Res. 2013, 49, 6248–6257. [Google Scholar] [CrossRef]
- Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2012, 67, 251–264. [Google Scholar] [CrossRef]
- Correia, F.N.; Rego, F.C.; Saraiva, M.D.G.; Ramos, I. Coupling GIS with Hydrologic and Hydraulic Flood Modelling. Water Resour. Manag. 1998, 12, 229–249. [Google Scholar] [CrossRef]
- Choné, G.; Biron, P.M.; Buffin-Bélanger, T.; Mazgareanu, I.; Neal, J.C.; Sampson, C.C. An assessment of large-scale flood modelling based on LiDAR data. Hydrol. Process. 2021, 35, e14333. [Google Scholar] [CrossRef]
- Lim, N.; Brandt, S. Flood map boundary sensitivity due to combined effects of DEM resolution and roughness in relation to model performance. Geomat. Nat. Hazards Risk. 2019, 10, 1613–1647. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Guo, S.; Liao, W.; Zeng, Z.; Chen, X. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. J. Hydrol. 2017, 547, 428–442. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM—AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat. Nat. Hazards Risk. 2017, 8, 1080–1102. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Rusjan, S.; Mikoš, M. Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results. Geosciences 2018, 8, 69. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. J. Flood Risk Manag. 2020, 13, e12639. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Nat. Hazards 2019, 97, 477–492. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Cunningham, L.; Deletic, A. A Cellular Automata Fast Flood Evaluation (CA-ffé) Model. Water Resour. Res. 2019, 55, 4936–4953. [Google Scholar] [CrossRef]
- Dasallas, L.; Kim, Y.; An, H. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef]
- USACE. HEC-RAS, River Analysis System, User’s Manual, Version 5.0; US Army Corps of Engineers Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Stephens, E.; Schumann, G.; Bates, P. Problems with binary pattern measures for flood model evaluation. Hydrol. Process. 2014, 28, 4928–4937. [Google Scholar] [CrossRef]
- Neal, J.C.; Odoni, N.A.; Trigg, M.A.; Freer, J.E.; Garcia-Pintado, J.; Mason, D.C.; Wood, M.; Bates, P.D. Efficient incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation models. J. Hydrol. 2015, 529, 169–183. [Google Scholar] [CrossRef]
- Yu, D.; Lane, S.N. Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment, part 2: Development of a sub-grid-scale treatment. Hydrol. Process. 2006, 20, 1567–1583. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk. Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Talukdar, S.; Ghose, B.; Shahfahad; Salam, R.; Mahato, S.; Pham, Q.B.; Linh, N.T.T.; Costache, R.; Avand, M. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch. Environ. Res. Risk. Assess. 2020, 34, 2277–2300. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, I.B.; Amiri, M.; et al. A New Hybrid Firefly–PSO Optimized Random Subspace Tree Intelligence for Torrential Rainfall-Induced Flash Flood Susceptible Mapping. Remote Sens. 2020, 12, 2688. [Google Scholar] [CrossRef]
- Vamvakeridou-Lyroudia, L.; Chen, A.; Khoury, M.; Gibson, M.; Kostaridis, A.; Stewart, D.; Wood, M.; Djordjevic, S.; Savic, D. Assessing and visualising hazard impacts to enhance the resilience of Critical Infrastructures to urban flooding. Sci. Total Environ. 2020, 707, 136078. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Taniguchi, K.; Tajima, Y. Impact of Climate Change on Flood Hazard at Airports on Pacific Islands: A Case Study of Faleolo International Airport, Samoa. J. Disaster Res. 2021, 16, 351–362. [Google Scholar] [CrossRef]
- Padulano, R.; Rianna, G.; Costabile, P.; Costanzo, C.; Del Giudice, G.; Mercogliano, P. Propagation of variability in climate projections within urban flood modelling: A multi-purpose impact analysis. J. Hydrol. 2021, 602, 126756. [Google Scholar] [CrossRef]
- Sassi, M.; Nicotina, L.; Pall, P.; Stone, D.; Hilberts, A.; Wehner, M.; Jewson, S. Impact of climate change on European winter and summer flood losses. Adv. Water Resour. 2019, 129, 165–177. [Google Scholar] [CrossRef]
- Mishra, B.; Emam, A.R.; Masago, Y.; Kumar, P.; Regmi, R.K.; Fukushi, K. Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta. J. Flood Risk. Manag. 2018, 11, S1105–S1115. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Perera, E.D.P.; Kudo, S.; Miyamoto, M.; Yamazaki, Y.; Kuribayashi, D.; Sawano, H.; Sayama, T.; Magome, J.; Hasegawa, A.; et al. Assessing flood disaster impacts in agriculture under climate change in the river basins of Southeast Asia. Nat. Hazards 2019, 97, 157–192. [Google Scholar] [CrossRef]
- Padulano, R.; Costabile, P.; Costanzo, C.; Rianna, G.; Del Giudice, G.; Mercogliano, P. Using the present to estimate the future: A simplified approach for the quantification of climate change effects on urban flooding by scenario analysis. Hydrol. Process. 2021, 35, e14436. [Google Scholar] [CrossRef]
- Pasquier, U.; Few, R.; Goulden, M.C.; Hooton, S.; He, Y.; Hiscock, K.M. “We can’t do it on our own!”—Integrating stakeholder and scientific knowledge of future flood risk to inform climate change adaptation planning in a coastal region. Environ. Sci. Policy 2020, 103, 50–57. [Google Scholar] [CrossRef]
- Monioudi, I.; Asariotis, R.; Becker, A.; Bhat, C.; Dowding-Gooden, D.; Esteban, M.; Feyen, L.; Mentaschi, L.; Nikolaou, A.; Nurse, L.; et al. Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): The case of Jamaica and Saint Lucia. Reg. Environ. Chang. 2018, 18, 2211–2225. [Google Scholar] [CrossRef]
- Keller, L.; Zischg, A.P.; Mosimann, M.; Rössler, O.; Weingartner, R.; Martius, O. Large ensemble flood loss modelling and uncertainty assessment for future climate conditions for a Swiss pre-alpine catchment. Sci. Total Environ. 2019, 693, 133400. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam break analysis and flood disaster simulation in arid urban environment: The Um Al-Khair dam case study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. [Google Scholar] [CrossRef]
Methods and Models | Main Characteristics |
---|---|
Empirical methods | Easy to implement and supports other modelling methods (calibration and data validation). |
Hydrodynamic models | Focuses on simulating the movement of the flow in 1D, 2D and 3D through mathematical models. |
Simplified conceptual models | It is efficient from a mathematical approach, does not require precision in the flow dynamics and has a low computational cost. |
Title | Database | Objective | Sources |
---|---|---|---|
Flood Risk Analysis and Assessment, Applications and Uncertainties: A Bibliometric Review | Web of Science (WoS) (FRAn * > 9800 records) (FRAs ** > 7100 records) | To assess the historical development of Flood Risk Analysis and Assessment (FRA) and the prospects of emerging fields of application. | [50] |
Multidimensional flood risk management under climate changes: Bibliometric analysis, trends and strategic guidelines for decision-making in urban dynamics | Web of Science (WoS) and Scopus (Elsevier) (52 documents) | Floods in the face of climate change and their impact on more frequent and more extensive flooding. | [51] |
Flood inundation modelling: A review of methods, recent advances and uncertainty analysis | It does not present a database | Review state-of-the-art flood models to explore their advantages and limitations and discuss future approaches. | [36] |
GLOFs in the WOS: bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979–2016) | Web of Science (WoS) (892 documents) | Glacial lake outburst flood research, global bibliometrics, geography and trends review. | [52] |
Keywords | Results | |
---|---|---|
Scopus | Web of Science (WoS) | |
“flood model” | 2164 | 1102 |
“flood modelling” | 747 | 367 |
“inundation model” | 1084 | 664 |
“inundation modelling” | 257 | 133 |
“flood inundation modelling” | 199 | 67 |
(“flood model” OR “flood modelling” OR “inundation model” OR “inundation modelling” OR “overflow flood model*”) OR “overflow flood modelling” OR “flood inundation modelling”) AND (“assessment” OR “risk” OR “analysis”) | 2070 | 1494 |
Scopus AND Web of Science (WoS) | ||
(“flood model” OR “flood modelling” OR “inundation model” OR “inundation modelling” OR “overflow flood model*”) OR “overflow flood modelling” OR “flood inundation modelling”) AND (“assessment” OR “risk” OR “analysis”) | 2290 |
Main Information | Results |
---|---|
Documents production | |
Sources (Journals, Books, among others) | 775 |
Documents | 2136 |
Average years from publication | 7.06 |
Average citations per documents | 18.73 |
Average citations per year per doc | 2.302 |
References | 60,637 |
Document contents | |
Keywords | 4598 |
Authors | 5649 |
Author appearances | 8903 |
Authors of single-authored documents | 107 |
Authors of multi-authored documents | 5542 |
Authors collaboration | |
Single-authored documents | 118 |
Documents per Author | 0.378 |
Authors per Document | 2.64 |
Co-Authors per Documents | 4.17 |
Collaboration Index | 2.75 |
Authors | Affiliation | Country | TC | NP | H-Index (Scopus) | H-Index (WoS) |
---|---|---|---|---|---|---|
Bates P. | University of Bristol | United Kingdom | 1181 | 79 | 84 | 82 |
Neal J. | University of Bristol | United Kingdom | 434 | 45 | 41 | 38 |
Horritt M. | Horritt Consulting, Ross-on-Wye | United Kingdom | 383 | 10 | 37 | 32 |
Fewtrell T. | Willis Towers Watson, London | United Kingdom | 379 | 8 | 14 | 11 |
Sanders B. | University of California, Irvine | United States | 267 | 23 | 41 | 41 |
Sampson Christopher C. | Fathom, Bristol | United Kingdom | 246 | 19 | 21 | 21 |
Schumann G. | University of Bristol | United Kingdom | 242 | 24 | 40 | 36 |
Schubert J. | University of California, Irvine | United States | 238 | 14 | 17 | 18 |
Pappenberger F. | European Centre for Medium-Range Weather Forecasts | United Kingdom | 233 | 19 | 56 | 56 |
Beven K. | Lancaster Environment Centre, Lancaster | United Kingdom | 203 | 14 | 96 | 91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morante-Carballo, F.; Montalván-Burbano, N.; Arias-Hidalgo, M.; Domínguez-Granda, L.; Apolo-Masache, B.; Carrión-Mero, P. Flood Models: An Exploratory Analysis and Research Trends. Water 2022, 14, 2488. https://doi.org/10.3390/w14162488
Morante-Carballo F, Montalván-Burbano N, Arias-Hidalgo M, Domínguez-Granda L, Apolo-Masache B, Carrión-Mero P. Flood Models: An Exploratory Analysis and Research Trends. Water. 2022; 14(16):2488. https://doi.org/10.3390/w14162488
Chicago/Turabian StyleMorante-Carballo, Fernando, Néstor Montalván-Burbano, Mijaíl Arias-Hidalgo, Luis Domínguez-Granda, Boris Apolo-Masache, and Paúl Carrión-Mero. 2022. "Flood Models: An Exploratory Analysis and Research Trends" Water 14, no. 16: 2488. https://doi.org/10.3390/w14162488