Dew Evaporation Amount and Its Influencing Factors in an Urban Ecosystem in Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Factors and LAI
2.3. Dew Condensation–Evaporation Monitoring Process
2.4. Microstructural Analysis of Leaves
2.5. Data Analysis
3. Results and Discussion
3.1. Dew Evaporation Period
3.2. Evaporation Amount
3.3. Effect of Leaf Microstructure on Dew Evaporation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Z.F.; Zhao, Z.Q.; Zhang, Q.Y.; Wu, W.C. Dew yield and its influencing factors at the western edge of Gurbantunggut Desert, China. Water 2019, 11, 733. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.X.; Wang, X.P.; Zhang, Y.F.; Hu, R. Dew formation characteristics at annual and daily scale in xerophyte shrub plantations at Southeast margin of Tengger Desert, Northern China. Ecohydrology 2018, 11, e1968. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, C.A.; Holwerda, F.; Goldsmith, G.R.; Delgado, J.; Yepez, E.; Carbajal, N.; Escoto-Rodríguez, M.; Arredondo, J.T. The importance of dew in the water balance of a continental semiarid grassland. J. Arid Environ. 2019, 168, 26–35. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Shi, W.J.; Wang, X.; Wang, Y.K. Non-rainfall water contribution to dryland jujube plantation evapotranspiration in the Hilly Loess Region of China. J. Hydrol. 2020, 583, 124604. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Z.Y.; Wang, Y.K.; Wang, Z.; Jin, S.S. Dew measurement and estimation of rain-fed jujube (Zizyphys jujube Mill) in a semi-arid loess hilly region of China. J. Arid Land 2017, 9, 547–557. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Najm, M.A.; Zurayk, R.; El-Fadel, M. Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agric. Forest Meteorol. 2017, 232, 411–421. [Google Scholar] [CrossRef]
- Beysens, D.; Mongruel, A.; Acker, K. Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristic. Atmos. Res. 2017, 189, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Richards, K. Urban and rural dewfall, furface moisture, and associated canopy-level air temperature and humidity measurements for Vancouver, Canada. Bound. Lay. Meteorol. 2005, 114, 143–163. [Google Scholar] [CrossRef]
- Beysens, D.; Muselli, M.; Nikolayev, V.; Narhe, R.; Milimouk, I. Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res. 2005, 73, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Losada, J.M.; Miriam, D.; Holbrook, N.M. Idioblasts and peltate hairs as distribution networks for water absorbed by xerophilous leaves. Plant Cell Environ. 2021, 44, 1346–1360. [Google Scholar] [CrossRef]
- Zhuang, Y.L.; Ratcliffe, S. Relationship between dew presence and Bassia dasyphylla plant growth. J. Arid Land 2012, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Prado, R.D.; Sancho, L.G. Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas Desert (Spain). Flora 2007, 202, 417–428. [Google Scholar] [CrossRef]
- Csintalan, Z.; Takács, Z.; Proctor, M.; Nagy, Z.; Tuba, Z. Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland. Plant Ecol. 2000, 151, 51–54. [Google Scholar] [CrossRef]
- Wang, L.X.; Kaseke, K.F.; Ravi, S.; Jiao, W.Z.; Mushi, R.; Shuuya, T.; Maggs-Kölling, G. Convergent vegetation fog and dew water use in the Namib Desert. Ecohydrology 2019, 12, e2130. [Google Scholar] [CrossRef]
- Schreel, J.D.M.; Vandewal, B.A.E.; Herve-Fernandez, P.; Boeckx, P.; Steppe, K. Hydraulic redistribution of foliar absorbed water causes turgordriven growth in mangrove seedings. Plant Cell Environ. 2019, 42, 2437–2447. [Google Scholar] [CrossRef]
- Yang, X.D.; Lv, G.H.; Ali, A.; Ran, Q.Y.; Gong, X.W.; Liu, Z.D.; Qin, L.; Liu, W.G. Experimental variations in functional and demographic traits of Lappula semiglabra among dew amount treatments in an arid region. Ecohydrology 2017, 10, 1858. [Google Scholar] [CrossRef]
- Adamu, I.; Adamu, U.A.; Danjuma, M.N.; Aminu, I.U.; Bello, Y.I.; Asiya, A.B.; Maigatari, A.A. Effects of humidity and dew on the early growth of jatropha (Jatropha curcas (Linn) seedlings in Kano, Nigeria. Bayero, J. Pure Appl. Sci. 2017, 10, 56–62. [Google Scholar] [CrossRef]
- Zhuang, Y.L.; Zhao, W.Z. The ecological role of dew in assisting seed germination of the annual desert plant species in desert environment, northwestern China. J. Arid Land 2016, 8, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Waseem, M.; Nie, Z.F.; Yao, G.Q.; Hasan, M.M.; Xiang, Y.; Fang, X.W. Dew absorption by leaf trichomes in Caragana korshinskii: An alternative water acquisition strategy for withstanding drought in arid environments. Physiol. Plant. 2021, 172, 528–539. [Google Scholar] [CrossRef]
- Agustin, C.; Silleta, L.C.; Pereyra, D.A.; Goldstein, G.; Scholz, F.G.; Bucci, S.J. Foliar water uptake in arid ecosystems: Seasonal variability and ecophysiological consequences. Oecologia 2020, 193, 337–348. [Google Scholar] [CrossRef]
- Chávez-Sahagún, E.; Andrade, J.L.; Zotz, G.; Reyes-Garcia, C. Dew can prolong photosynthesis and water status during drought in some epiphytic bromeliads from a seasonally dry tropical forest. Trop. Conserv. Sci. 2019, 12, 479–488. [Google Scholar] [CrossRef]
- Sergi, M.; Salvador, N.; Leonor, A. Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field condition. New Phytol. 1999, 144, 109–119. [Google Scholar]
- Holanda, A.E.R.; Souza, B.C.; Carvalho, E.C.D.; Oliveira, R.S.; Soares, A.A. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? Plant Biol. 2019, 21, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Barradas, V.L.; Glez-Medellin, M.G. Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. Int. J. Biometeorol. 1999, 43, 1–7. [Google Scholar] [CrossRef]
- Eller, C.B.; Burgess, S.S.; Oliveira, R.S. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiol. 2015, 35, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Dietz, J.; Leuschner, C.; Holscher, D.; Kreilein, H. Vertical patterns and duration of surface wetness in an old-growth tropical montane forest, Indonesia. Flora 2007, 202, 111–117. [Google Scholar] [CrossRef]
- Zhang, Q.; Quan, J.N.; Tie, X.X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D.L. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Zhu, H.; Pan, Y.P.; Xie, J. Influence of fog-haze on dew condensation in urban areas. Teh. Vjesn. 2018, 25, 876–883. [Google Scholar] [CrossRef]
- Muhammad, S.; Wuys, K.; Nuyts, G.; Wael, K.D.; Samson, R. Characterization of epicuticular wax structures on leaves of urban plant species and its association with leaf wettability. Urban For. Urban Gree. 2020, 47, 126557. [Google Scholar] [CrossRef]
- Stephens, C.M.; Mcvicar, T.R.; Johnson, F.M.; Marshall, L.A. Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett. 2018, 45, 11164–11172. [Google Scholar] [CrossRef]
- You, G.Y.; Zhang, Y.P.; Liu, Y.H.; Song, Q.H.; Lu, Z.Y.; Tan, Z.H.; Wu, C.S.; Xie, Y.N. On the attribution of changing pan evaporation in a nature reserve in SW China. Hydrol. Process. 2012, 27, 2676–2682. [Google Scholar] [CrossRef]
- Yu, R.H.; Zhang, Z.Z.; Lu, X.X.; Chang, I.-S.; Liu, T.X. Variations in dew moisture regimes in desert ecosystems and their influencing factor. Wires. Water 2020, 7, e1482. [Google Scholar] [CrossRef]
- Jia, Z.F.; Wang, Z.; Wang, H. Characteristics of dew formation in the semi-arid loess plateau of central Shaanxi Province, China. Water 2019, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Wen, X.F. Characteristics of dew events in an arid artificial oasis cropland and a sub-humid cropland in China. J. Arid Land 2016, 8, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.L.; Zhao, W.Z. Dew formation and its variation in Haloxylon ammodendron plantations at the edge of a desert oasis, northwestern China. Agric. For. Meteorol. 2017, 247, 541–550. [Google Scholar] [CrossRef]
- Guo, X.N.; Zha, T.S.; Jia, X.; Wu, B.; Feng, W.; Xie, J.; Gong, J.N.; Zhang, Y.Q.; Peltola, H. Dynamics of dew in a cold desert-shrub ecosystem and its abiotic controls. Atmosphere 2016, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.m.; Li, C.; Guo, B.; Ma, J.X.; Ayup, M.; Chen, Z.S. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. J. Hydrol. 2012, 472–473, 90–98. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, G.; Barlage, M.; Zhang, Y.; Hicke, J.A.; Meddens, A.; Zhou, G.; Massman, W.J.; Frank, J. An observational and modeling study of impacts of bark beetle-caused tree mortality on surface energy and hydrological cycles. J. Hydrometeorol. 2015, 16, 744–761. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Tang, J.; Zhu, H.; Lin, Y.Z.; Jin, M.L.; Zhu, X.Y. Monitoring dew condensation and its response to conventional meteorological factors in an urban ecosystem of northeastern China. Acta Ecol. Sin. 2017, 37, 2382–2391, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, X.M.; Sun, H.T.; Hua, D.; Qin, J.X. How Populus euphratica utilizes dew in an extremely arid region. Plant Soil 2019, 443, 493–508. [Google Scholar] [CrossRef]
- Gibbons, M.J.; Marco, P.D.; Robinson, A.J. Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets. Int. J. Heat Mass Trans. 2020, 148, 119093. [Google Scholar] [CrossRef]
- Kiwoong, K.; Hyejeong, K.; Sung, H.P.; Sang, J.L. Hydraulic strategy of Cactus trichome for absorption and storage of water under arid environment. Front. Plant Sci. 2017, 8, 1777. [Google Scholar] [CrossRef] [Green Version]
- Pina, A.L.C.B.; Zandavalli, R.B.; Oliveira, R.S.; Martins, R.F.; Soares, A.A. Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region. Funct. Plant Biol. 2016, 43, 851–861. [Google Scholar] [CrossRef]
- Malik, F.T.; Clement, R.M.; Gethin, D.T.; Beysens, D.; Cohen, R.E.; Krawszik, W.; Parker, A.R. Dew harvesting efficiency of four species of cacti. Bioinspir. Biomim. 2015, 10, 036005. [Google Scholar] [CrossRef]
- Jura-Morawiec, J.; Marcinkiewicz, J. Wettability, water absorption and water storage in rosette leaves of the dragon tree (Dracaena draco L.). Planta 2020, 252, 30. [Google Scholar] [CrossRef]
- Masrahi, Y.S. Glochids microstructure and dew harvesting ability in Opuntia stricta (Cactacerae). J. King Saud Univ. Sci. 2020, 32, 3307–3312. [Google Scholar] [CrossRef]
- Guzmán-Delgado, P.; Laca, E.; Zwieniecki, M.A. Unraveling foliar water uptake pathways: The contribution of stomata and the cuticle. Plant Cell Environ. 2020, 44, 1728–1740. [Google Scholar] [CrossRef]
- Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 2008, 134, 151–160. [Google Scholar] [CrossRef]
- Burkhardt, J. Hygroscopic particles on leaves: Nutrients or desiccants? Ecol. Monogr. 2010, 80, 369–399. [Google Scholar] [CrossRef]
Reference | Region | Ecosystem Type | Underlying Surface | Climate Conditions | Dew Amount | Dew Duration |
---|---|---|---|---|---|---|
[3] | Llanos de Ojuelos, Jalisco, Mexico (21.78° N, 101.60° E, 2240 m asl) | Grassland | Bouteloua gracilis (grass) | Semiarid | 16.5–69.0 mm/y | Dew formed around sunset (20:00 p.m.), completely evaporated before late morning (10:00 a.m.) |
[33] | Middle of Guanzhong Plain, China (34°33′ N, 108°54′ E, 41.72 m asl) | Farmland | Wheat/corn | Semiarid temperate | 32.8 mm/y | 18:00 p.m.–8:00 a.m. |
[34] | Zhangye, Gansu Province, China (38°51′ N, E100°22′, 1550 m asl) | Farmland | Maize | arid | 9.9 mm/y | 21:00 p.m.–9:00 a.m. |
Luancheng, Hebei Province, China (37°49′ N, 114°40′ E, 50 m asl) | Wheat/maize | Subhumid | 20.2 mm/y | 20:00 p.m.–10:00 a.m. | ||
[5] | Chinese Loess Plateau (38°11′ N, 109°28′ E, 1049 m asl) | Farmland | Zizyphus jujube (shrub) | Semiarid temperate | 0.11–2.30 mm/day Mean 0.75 mm/day | 0–16 h |
[4] | Chinese Loess Plateau (38°11′ N, 109°28′ E, 1049 m asl) | Farmland | Zizyphus jujube (shrub) | Semiarid temperate | 75.3 mm/y | 19:00 p.m.–9:00 a.m. |
[1] | Western edge of the Gurbantuggut desert, China (44°48′ N, 85°33′ E) | Desert | H. persicum, H. ammodendron and moss crust (shrub and crust) | Temperate continental | 12.1 mm/y | 21:00 p.m.–10:00 a.m. |
[2] | Tengger Desert, China (37°27′ N, 104°57′ E, 1339 m asl) | Desert-oasis | Moss crust | Temperate continental | 15.3 mm/y | Dew formed during the night, completely evaporated by 13:00–14:00 p.m. next day |
[35] | Southern edge of the Badain Jaran Desert, China (39°21′ N, 100°07′ E, 1374 m asl) | Desert-Shrub | H. ammodendron (shrub) | Temperate continental | 16.1 mm/y | Dew formed after sunset, completely evaporated before 10:30 a.m. |
[36] | Southern edge of the Mu Us desert, China (37°42′31″ N, 107°13′45″ E, 1530 m asl) | Desert-Shrub | mixture of deciduous shrub | Mid-temperate semiarid continental monsoon | 0.09–0.16 mm/day | 10:00 p.m.–6:30 a.m. (Summer) 8:30 p.m.–7:30 a.m. (Spring and Autumn) |
[37] | Eastern edge of the Taklimakan Desert, China (40°28′2.3″ N, 87°51′27.1″ E, 842 m asl) | Forest | Populus Euphratica Oliv. (arbor) | Extremely arid | 0.12 mm/day 12.87 mm/y | 1–2.5 h in nighttime |
[24] | Pacific coast of Mexico (19°30′ N, 105°03′ E) | Forest | Deciduous forest | Tropical | 0.013–0.203 mm/d | 60–129 min after sunrise (11 m) 259–290 min after sunrise (2 m) |
This study | Changchun, Jilin Province, China (44°05′ N, 125°20′ E, 330 m asl) | Urban | Mixture of deciduous shrubs | Semihumid monsoon | 28.24–38.33 mm/y | Dew formed 30 min after sunset, completely evaporated 4 h after sunrise |
Density of Trichome | Density of Stomata | Long-Axis Diameter of Stomata | Drop Contact Angle | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adaxial (Pieces/mm2) | Abaxial (Pieces/mm2) | Adaxial (no./mm2) | Abaxial (no./mm2) | Adaxial (μm) | Abaxial (μm) | Adaxial (°) | Abaxial (°) | |||||||||
Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | Range | Average | |
Syringa | — | — | 13–92 | 37.1 ± 30.9 | 82–235 | 121.3 ± 54.2 | 15–25 | 20.0 ± 3.2 | 15.2–32.5 | 21.3 ± 4.5 | 65.7–175.5 | 102.7 ± 42.3 | 116.9–146.1 | 131.8 ± 10.9 | ||
Hemiptelea | 10–134 | 56.7 ± 50.9 | 14–210 | 91.9 ± 85.9 | — | 121–367 | 311.7 ± 82.5 | — | 12.5–20.9 | 15.9 ± 4.9 | 44.4–66.4 | 55.0 ± 8.0 | 25.0–58.0 | 37.4 ± 13.5 | ||
Buxus | — | — | — | 163–268 | 210.3 ± 44.4 | — | 12.1–18.4 | 15.2 ± 5.9 | 53.7–129.5 | 83.2 ± 26.6 | 58.0–144.9 | 92.5 ± 32.1 | ||||
Cornus | 12–80 | 17.7 ± 13.0 | 2–40 | 9.7 ± 6.6 | — | 62–158 | 120.1 ± 55.8 | — | 10.8–15.2 | 16.3 ± 3.6 | 49.7–100.7 | 71.4 ± 21.5 | 21.5–130.6 | 62.8 ± 39.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Jia, C.; Liu, H. Dew Evaporation Amount and Its Influencing Factors in an Urban Ecosystem in Northeastern China. Water 2022, 14, 2428. https://doi.org/10.3390/w14152428
Xu Y, Jia C, Liu H. Dew Evaporation Amount and Its Influencing Factors in an Urban Ecosystem in Northeastern China. Water. 2022; 14(15):2428. https://doi.org/10.3390/w14152428
Chicago/Turabian StyleXu, Yingying, Chenzhuo Jia, and Hongzhao Liu. 2022. "Dew Evaporation Amount and Its Influencing Factors in an Urban Ecosystem in Northeastern China" Water 14, no. 15: 2428. https://doi.org/10.3390/w14152428
APA StyleXu, Y., Jia, C., & Liu, H. (2022). Dew Evaporation Amount and Its Influencing Factors in an Urban Ecosystem in Northeastern China. Water, 14(15), 2428. https://doi.org/10.3390/w14152428