Species Diversity, Distribution, and Abundance of Freshwater Snails in KwaZulu-Natal, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Snail Sampling
2.3. Physicochemical Parameters and Climatic Factors
2.4. Data Analysis
3. Results
3.1. Snail Distribution and Abundance
3.2. Snail Diversity, Richness, and Evenness
3.3. Interactions between Snail Species
3.4. Relationship between Snail Abundance, Physicochemical Parameters, and Environmental Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Revenga, C.; Campbell, I.; Abell, R.; De Villiers, P.; Bryer, M. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 397–413. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chiarucci, A.; Bacaro, G.; Scheiner, S.M. Old and new challenges in using species diversity for assessing biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2426–2437. [Google Scholar] [CrossRef][Green Version]
- Whittaker, R.J.; Willis, K.J.; Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 2001, 28, 453–470. [Google Scholar] [CrossRef][Green Version]
- Strong, E.E.; Gargominy, O.; Ponder, W.F.; Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. In Freshwater Animal Diversity Assessment; Springer: Berlin/Heidelberg, Germany, 2007; pp. 149–166. [Google Scholar]
- Hamli, H.; Azmai, S.S.; Hamed, S.A. Diversity and habitat characteristics of local freshwater Gastropoda (Caenogastropoda) from Sarawak, Malaysia. Singap. J. Sci. Res. 2020, 10, 23–27. [Google Scholar] [CrossRef]
- Pyron, M.; Brown, K.M. Introduction to mollusca and the class Gastropoda. In Thorp and Covich’s Freshwater Invertebrates; Elsevier: Amsterdam, The Netherlands, 2015; pp. 383–421. [Google Scholar]
- Madsen, H.; Hung, N. An overview of freshwater snails in Asia with main focus on Vietnam. Acta Trop. 2015, 141, 372–384. [Google Scholar] [CrossRef]
- Chimbari, M.J. Enhancing schistosomiasis control strategy for Zimbabwe: Building on past experiences. J. Parasitol. Res. 2012, 2012, 353768. [Google Scholar] [CrossRef]
- Ndlela, B.; Chimbari, M.J.; Madsen, H. Interactions between Bulinus globosus and B. tropicus (Gastropoda: Planorbidae) in a pond experiment in Zimbabwe. Afr. J. Aquat. Sci. 2007, 32, 13–16. [Google Scholar] [CrossRef]
- Ndlela, B.; Madsen, H. Laboratory and quasi-field studies on interspecific competition between Bulinus globosus and B. tropicus (Gastropoda: Planorbidae). South. Afr. J. Aquat. Sci. 2001, 26, 17–21. [Google Scholar] [CrossRef]
- Perissinotto, R.; Miranda, N.A.; Raw, J.L.; Peer, N. Biodiversity census of lake St Lucia, iSimangaliso wetland park (South Africa): Gastropod molluscs. ZooKeys 2014, 440, 1–43. [Google Scholar] [CrossRef]
- Manyangadze, T.; Chimbari, M.J.; Gebreslasie, M.; Ceccato, P.; Mukaratirwa, S. Modelling the spatial and seasonal distribution of suitable habitats of schistosomiasis intermediate host snails using Maxent in Ndumo area, KwaZulu-Natal Province, South Africa. Parasites Vectors 2016, 9, 572. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Manyangadze, T.; Chimbari, M.J.; Rubaba, O.; Soko, W.; Mukaratirwa, S. Spatial and seasonal distribution of Bulinus globosus and Biomphalaria pfeifferi in Ingwavuma, uMkhanyakude district, KwaZulu-Natal, South Africa: Implications for schistosomiasis transmission at micro-geographical scale. Parasites Vectors 2021, 14, 222. [Google Scholar] [CrossRef] [PubMed]
- Moema, E.B.E.; King, P.H.; Baker, C. Cercariae developing in Lymnaea natalensis Krauss, 1848 collected in the vicinity of Pretoria, Gauteng Province, South Africa. Onderstepoort J. Vet. Res. 2008, 75, 215–223. [Google Scholar] [CrossRef] [PubMed][Green Version]
- King, P.H.; Van As, J. Cercariae shed by Bulinus tropicus (Krauss, 1848) in the Free State, South Africa. Afr. Zool. 2001, 36, 95–105. [Google Scholar] [CrossRef]
- Van Eeden, J.; Combrinck, C. Distributional trends of four species of freshwater snails in South Africa with special reference to the intermediate hosts of bilharzia. Afr. Zool. 1966, 2, 95–109. [Google Scholar] [CrossRef][Green Version]
- De Kock, K.; Wolmarans, C. Distribution, habitats and role as intermediate host of the freshwater snail, Bulinus forskalii, in South Africa. Onderstepoort J. Vet. Res. 2005, 72, 165–174. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Appleton, C. Alien and invasive fresh water Gastropoda in South Africa. Afr. J. Aquat. Sci. 2003, 28, 69–81. [Google Scholar] [CrossRef]
- Ndlovu, M.; Clulow, A.D.; Savage, M.J.; Nhamo, L.; Magidi, J.; Mabhaudhi, T. An Assessment of the Impacts of Climate Variability and Change in KwaZulu-Natal Province, South Africa. Atmosphere 2021, 12, 427. [Google Scholar] [CrossRef]
- Ndlovu, M.S.; Demlie, M. Assessment of meteorological drought and wet conditions using two drought indices across KwaZulu-Natal Province, South Africa. Atmosphere 2020, 11, 623. [Google Scholar] [CrossRef]
- Allan, F.; Ame, S.M.; Tian-Bi, Y.-N.T.; Hofkin, B.V.; Webster, B.L.; Diakité, N.R.; N’Goran, E.K.; Kabole, F.; Khamis, I.S.; Gouvras, A.N. Snail-related contributions from the Schistosomiasis Consortium for Operational Research and Evaluation program including xenomonitoring, focal mollusciciding, biological control, and modeling. Am. J. Trop. Med. Hyg. 2020, 103, 66–79. [Google Scholar] [CrossRef]
- Brown, D.; Kristensen, T. A field guide to African freshwater snails, southern African species. Dan. Bilharz. Lab. Publ. Number 1989, 383. [Google Scholar]
- Mereta, S.T.; Bedewi, J.; Yewhalaw, D.; Mandefro, B.; Abdie, Y.; Tegegne, D.; Birke, W.; Mulat, W.L.; Kloos, H. Environmental determinants of distribution of freshwater snails and trematode infection in the Omo Gibe River Basin, southwest Ethiopia. Infect. Dis. Poverty 2019, 8, 93. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pedersen, U.B.; Midzi, N.; Mduluza, T.; Soko, W.; Stensgaard, A.-S.; Vennervald, B.J.; Mukaratirwa, S.; Kristensen, T.K. Modelling spatial distribution of snails transmitting parasitic worms with importance to human and animal health and analysis of distributional changes in relation to climate. Geospat. Health 2014, 8, 335–343. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Clarke, K.R.; Gorley, R.; Somerfield, P.J.; Warwick, R. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; PRIMER-E Ltd.: Auckland, New Zealand, 1994; p. 176. [Google Scholar]
- Kiernan, D. Natural Resources Biometrics; Open SUNY Textbooks, Milne Library; State University of New York at Geneseo: New York, NY, USA, 2014. [Google Scholar]
- Leinster, T.; Cobbold, C.A. Measuring diversity: The importance of species similarity. Ecology 2012, 93, 477–489. [Google Scholar] [CrossRef][Green Version]
- Chimbari, M.J.; Kalinda, C.; Siziba, N. Changing patterns of Schistosoma host snail population densities in Maun, Botswana. Afr. J. Aquat. Sci. 2020, 45, 493–499. [Google Scholar] [CrossRef]
- Usman, A.I.; Adamu, T.; Abdulhamid, A. Studies on distribution and abundance of freshwater snail intermediate hosts of schistosomiasis along Kwanar Areh Dam in Rimi LGA of Katsina State. J. Parasitol. Vector Biol. 2019, 11, 26–35. [Google Scholar]
- Sharma, K.; Bangotra, K.; Saini, M. Diversity and distribution of mollusca in relation to the physico-chemical profile of Gho-Manhasan stream, Jammu (JK). Int. J. Biodivers. Conserv. 2013, 5, 240–249. [Google Scholar]
- Oladejo, M.K.; Oloyede, O.O.; Adesakin, T.A.; Morenikeji, O.A. The abundance, distribution and diversity of invasive and indigenous freshwater snails in a section of the Ogunpa River, southwest Nigeria. Molluscan Res. 2021, 41, 222–234. [Google Scholar] [CrossRef]
- Miranda, N.; Perissinotto, R. Effects of an alien invasive gastropod on native benthic assemblages in coastal lakes of the iSimangaliso Wetland Park, South Africa: Ecology. Afr. Invertebr. 2014, 55, 209–228. [Google Scholar]
- Miranda, N.A.; Perissinotto, R. Benthic assemblages of wetlands invaded by Tarebia granifera (Lamarck, 1822) (Caenogastropoda: Thiaridae) in the iSimangaliso Wetland Park, South Africa. Molluscan Res. 2014, 34, 40–48. [Google Scholar] [CrossRef]
- Miranda, N.A.; Perissinotto, R.; Appleton, C.C. Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera. S. Afr. J. Sci. 2010, 106, 1–7. [Google Scholar] [CrossRef]
- Brown, D.S. Freshwater Snails of Africa and Their Medical Importance; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Odongo-Aginya, E.; Kironde, F.; Kabatereine, N.; Kategere, P.; Kazibwe, F. Effect Of Seasonal Rainfall And Other Environmental Changes, On Snail Density And Infection Rates With Schistosoma mansoni Fifteen Years After The Last Snails Study In Kigungu, Entebbe, Uganda. East Afr. Med. J. 2008, 85, 556–563. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ndione, R.A.; Bakhoum, S.; Haggerty, C.; Jouanard, N.; Senghor, S.; Ndao, P.D.; Riveau, G.; Ba, C.T. Intermediate Host Snails of Human Schistosomes in the Senegal River Delta: Spatial Distribution According to Physicochemical Parameters. Invertebr. -Ecophysiol. Manag. 2019, 71, 1–10. [Google Scholar]
- Ofoezie, I.E. Distribution of freshwater snails in the man-made Oyan Reservoir, Ogun State, Nigeria. Hydrobiologia 1999, 416, 181–191. [Google Scholar] [CrossRef]
- Cañete, R.; Yong, M.; Sánchez, J.; Wong, L.; Gutiérrez, A. Population dynamics of intermediate snail hosts of Fasciola hepatica and some environmental factors in San Juan y Martinez municipality, Cuba. Memórias Do Inst. Oswaldo Cruz 2004, 99, 257–262. [Google Scholar] [CrossRef][Green Version]
- Brown, D. A review of the freshwater Mollusca of Natal and their distribution. Ann. Natal Mus. 1967, 18, 477–494. [Google Scholar]
- Kalinda, C.; Chimbari, M.J.; Mukaratirwa, S. Effect of temperature on the Bulinus globosus—Schistosoma haematobium system. Infect. Dis. Poverty 2017, 6, 57. [Google Scholar] [CrossRef][Green Version]
- Woolhouse, M.; Chandiwana, S. Population dynamics model for Bulinus globosus, intermediate host for Schistosoma haematobium, in river habitats. Acta Trop. 1990, 47, 151–160. [Google Scholar] [CrossRef]
- Salawu, O.; Odaibo, A. The bionomics and diversity of freshwater snails species in Yewa North, Ogun State, Southwestern Nigeria. Helminthologia 2014, 51, 337–344. [Google Scholar] [CrossRef][Green Version]
- Oso, O.G.; Odaibo, A.B. Land use/land cover change, physico-chemical parameters and freshwater snails in Yewa North, Southwestern Nigeria. PLoS ONE 2021, 16, e0246566. [Google Scholar] [CrossRef]
- Boelee, E.; Laamrani, H. Environmental control of schistosomiasis through community participation in a Moroccan oasis. Trop. Med. Int. Health 2004, 9, 997–1004. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pointier, J.-P. Invading freshwater snails and biological control in Martinique Island, French West Indies. Memórias Do Inst. Oswaldo Cruz 2001, 96, 67–74. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gomez Perez, J.; Vargas, M.; Malek, E.A. Displacement of Biomfhalaria glabrata by thiara granifera under natural conditions in the Dominican Republic. Memórias Do Inst. Oswaldo Cruz 1991, 86, 341–347. [Google Scholar] [CrossRef][Green Version]
- Pointier, J.; Incani, R.; Balzan, C.; Chrosciechowski, P.; Prypchan, S. Invasion of the rivers of the littoral central region of Venezuela by Thiara granifera and Melanoides tuberculata (Mollusca: Prosobranchia: Thiaridae) and the absence of Biomphalaria glabrata, snail host of Schistosoma mansoni. Nautilus 1994, 107, 124–128. [Google Scholar]
- Brackenbury, T.D.; Appleton, C. Recolonization of the Umsindusi river, Natal, South Africa, by the invasive gastropod, Physa acuta (Basommatophora, Physidae). J. Med. Appl. Malacol. 1993, 5, 39–44. [Google Scholar]
- Zukowski, S.; Walker, K.F. Freshwater snails in competition: Alien Physa acuta (Physidae) and native Glyptophysa gibbosa (Planorbidae) in the River Murray, South Australia. Mar. Freshw. Res. 2009, 60, 999–1005. [Google Scholar] [CrossRef]
Districts | Number of Sites | Snail Species | Total Snail Abundance | |||||||
---|---|---|---|---|---|---|---|---|---|---|
B. pfeifferi | B. globosus | B. forskalii | B. tropicus | L. natalensis | T. granifera | P. acuta | Bivalves | |||
Amajuba | 9 | 0 | 5 | 122 | 83 | 2 | 0 | 0 | 0 | 212 |
eThekwini | 20 | 1 | 26 | 0 | 123 | 12 | 215 | 0 | 50 | 427 |
iLembe | 9 | 0 | 6 | 0 | 0 | 50 | 302 | 0 | 0 | 358 |
King Cetshwayo | 11 | 1 | 117 | 10 | 5 | 0 | 135 | 0 | 0 | 268 |
Sisonke | 10 | 0 | 0 | 7 | 153 | 100 | 0 | 10 | 45 | 315 |
Ugu | 10 | 145 | 20 | 0 | 410 | 50 | 320 | 0 | 0 | 945 |
uMgungundlovu | 10 | 0 | 0 | 0 | 97 | 82 | 0 | 140 | 0 | 319 |
uMkhanyakude | 13 | 12 | 31 | 0 | 0 | 0 | 847 | 0 | 0 | 890 |
uMzinyathi | 7 | 0 | 33 | 0 | 20 | 9 | 0 | 0 | 0 | 62 |
uThukela | 12 | 87 | 136 | 0 | 49 | 12 | 122 | 0 | 0 | 406 |
Zululand | 16 | 0 | 114 | 0 | 0 | 0 | 260 | 0 | 0 | 374 |
Total snail abundance | 127 | 246 | 488 | 139 | 940 | 317 | 2201 | 150 | 95 | 4576 |
Number of Species | Shannon Index (H′) | Simpson’s Index (D) | Pielou’s Index (J′) | Margalef’s Index (d) | ENS | |
---|---|---|---|---|---|---|
Ugu | 8 | 1.63 | 0.74 | 0.78 | 0.84 | 5.10 |
uMkhanyakude | 3 | 0.22 | 0.09 | 0.20 | 0.29 | 1.25 |
Zululand | 3 | 0.73 | 0.45 | 0.66 | 0.34 | 2.08 |
uThukela | 5 | 1.42 | 0.74 | 0.88 | 0.67 | 4.14 |
iLembe | 2 | 0.10 | 0.04 | 0.14 | 0.17 | 1.11 |
eThekwini | 6 | 1.24 | 0.65 | 0.69 | 0.83 | 3.46 |
Sisonke | 5 | 1.19 | 0.64 | 0.74 | 0.70 | 3.29 |
uMgungundlovu | 4 | 1.09 | 0.65 | 0.79 | 0.52 | 2.97 |
uMzinyathi | 4 | 0.82 | 0.43 | 0.59 | 0.54 | 2.27 |
Amajuba | 4 | 0.82 | 0.52 | 0.59 | 0.56 | 2.27 |
King Cetshwayo | 5 | 0.93 | 0.56 | 0.57 | 0.72 | 2.53 |
B. globosus | B. pfeifferi | B. tropicus | B. forskalii | L. natalensis | T. granifera | Bivalves | P. acuta | |
---|---|---|---|---|---|---|---|---|
B. globosus | 1.00 | |||||||
B. pfeifferi | 0.713 * | 1.00 | ||||||
B. tropicus | −0.138 | 0.196 | 1.00 | |||||
B. forskalii | 0.063 | 0.115 | 0.457 | 1.00 | ||||
L. natalensis | −0.009 | 0.153 | 0.840 * | 0.128 | 1.00 | |||
T. granifera | 0.527 | 0.599 | −0.272 | −0.092 | −0.160 | 1.00 | ||
Bivalves | 0.025 | 0.103 | 0.725 * | 0.092 | 0.680 * | −0.079 | 1.00 | |
P. acuta | −0.145 | 0.100 | 0.718 * | 0.321 | 0.784 * | −0.030 | 0.593 * | 1.00 |
Districts | pH | Electrical Conductivity | Salinity (psu) | Pressure (psi) | Dissolved Oxygen (ppm) |
---|---|---|---|---|---|
1. Zululand | 7.98 ± 0.55 | 232.49 ± 163.65 | 0.11 ± 0.08 | 13.34 ± 0.53 | 4.33 ± 3.64 |
2. uThukela | 7.80 ± 0.40 | 142.58 ± 120.34 | 0.07 ± 0.06 | 12.94 ± 0.13 | 5.73 ± 1.64 |
3. iLembe | 7.74 ± 0.22 | 176.39 ± 100.30 | 0.08 ± 0.05 | 14.10 ± 0.32 | 8.19 ± 1.49 |
4. eThekwini | 7.54 ± 0.35 | 695.56 ± 239.27 | 0.32 ± 0.17 | 14.51 ± 0.24 | 6.34 ± 1.87 |
5. Ugu | 7.19 ± 0.34 | 358.92 ± 216.67 | 13.12 ± 38.82 | 12.81 ± 4.28 | 9.40 ± 10.27 |
6. Sisonke | 7.30 ± 0.27 | 125.09 ± 65.04 | 0.06 ± 0.03 | 13.01 ± 0.66 | 7.71 ± 1.25 |
7. uMgungundlovu | 7.24 ± 0.26 | 211.63 ± 313.07 | 0.10 ± 0.15 | 13.14 ± 0.69 | 6.76 ± 0.97 |
8. uMzinyathi | 7.42 ± 0.28 | 199.04 ± 79.59 | 0.09 ± 0.04 | 13.02 ± 0.20 | 5.50 ± 1.29 |
9. Amajuba | 6.42 ± 1.04 | 1005.30 ± 1108.77 | 0.51 ± 0.59 | 44.13 ± 89.12 | 6.80 ± 1.20 |
10. King Cetshwayo | 7.35 ± 0.32 | 695.33 ± 547.55 | 0.34 ± 0.28 | 14.51 ± 0.43 | 5.56 ± 1.70 |
B. globosus | B. pfeifferi | B. tropicus | B. forskalii | L. natalensis | T. granifera | Bivalves | P. acuta | |
---|---|---|---|---|---|---|---|---|
pH | 0.3040 * | 0.0069 | −0.6383 * | −0.7647 * | −0.2683 * | 0.3564 * | −0.3556 * | −0.5891 * |
EC | 0.1398 | 0.1988 | 0.0851 | 0.4506 * | −0.2378 | 0.1688 | −0.0065 | −0.1715 |
Salinity | 0.3465 * | 0.3564 * | 0.1824 | 0.5872 * | −0.0671 | 0.3377 * | 0.1358 | 0.0969 |
DO | −0.2492 * | 0.1234 | 0.5532 * | 0.4370 * | 0.3415 * | 0.2126 | 0.2521 * | 0.5891 * |
Rainfall | 0.1048 | −0.0348 | −0.7615 * | 0.0316 | −0.8047 * | 0.0419 | −0.8476 * | −0.6706 * |
NDVI | 0.1595 | 0.2038 | −0.0550 * | 0.2948 * | −0.2621 * | 0.3955 * | 0.2181 | 0.2370 * |
EVI | −0.1230 | 0.0795 | −0.0459 | −0.0211 | −0.0966 | 0.3443 * | 0.1834 | 0.2948 * |
NDWI | −0.3872 * | −0.0994 | 0.0000 | 0.0211 | −0.1058 | 0.2466 * | 0.2379 * | 0.3064 * |
MinTemp | 0.4328 * | 0.4970 * | −0.4404 * | −0.2632 * | −0.4736 * | 0.7583 * | −0.1090 | −0.3237 * |
MaxTemp | 0.5148 * | 0.2286 * | −0.7615 * | −0.2527 * | −0.7679 * | 0.4141 * | −0.3618 * | −0.6764 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwoko, O.E.; Kalinda, C.; Manyangadze, T.; Chimbari, M.J. Species Diversity, Distribution, and Abundance of Freshwater Snails in KwaZulu-Natal, South Africa. Water 2022, 14, 2267. https://doi.org/10.3390/w14142267
Nwoko OE, Kalinda C, Manyangadze T, Chimbari MJ. Species Diversity, Distribution, and Abundance of Freshwater Snails in KwaZulu-Natal, South Africa. Water. 2022; 14(14):2267. https://doi.org/10.3390/w14142267
Chicago/Turabian StyleNwoko, Onyekachi Esther, Chester Kalinda, Tawanda Manyangadze, and Moses John Chimbari. 2022. "Species Diversity, Distribution, and Abundance of Freshwater Snails in KwaZulu-Natal, South Africa" Water 14, no. 14: 2267. https://doi.org/10.3390/w14142267