Impact of Hydrological Conditions on the Isotopic Composition of the Sava River in the Area of the Zagreb Aquifer
Abstract
:1. Introduction
2. Research Area
3. Materials and Methods
4. Results and Discussion
5. Conclusions
- The isotopic signature together with the observed in situ parameters indicate that mixing with groundwater is more pronounced in the downstream part of the Zagreb aquifer.
- Evaluation of δ18O amplitudes in the Sava River showed that they vary between 0.22 and 1.86, mainly depending on hydrological conditions. The extreme isotopic signature was the result of the extremely wet and hot hydrological year 2017/2018.
- Although long-term data can generate reliable results in the evaluation of the precipitation isotopic signature, it has been shown that the isotopic signature in the Sava River must be evaluated at the hydrologic year level and that the use of outliers and extreme values should be studied in detail.
- The MRT for the 2019/2020 hydrologic year was estimated to be about 2.5 months.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niinikoski, P.I.; Hendriksson, N.M.; Karhu, J.A. Using stable isotopes to resolve transit times and travel routes of river water: A case study from southern Finland. Isot. Environ. Health Stud. 2016, 52, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.C.; Mu, H.K.; Wang, H.; Ye, X.Y.; Ma, H.Y.; Martin, J.D. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region, Northwest China. Hydrol. Processes 2018, 32, 1130–1136. [Google Scholar] [CrossRef]
- Cao, T.; Han, D.; Song, X.; Trolle, D. Subsurface hydrological processes and groundwater residence time in a coastal alluvium aquifer: Evidence from environmental tracers (δ18O, δ2H, CFCs, 3H) combined with hydrochemistry. Sci. Total Environ. 2020, 743, 140684. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Li, K.; Zhang, H.; Yu, Z.; Yi, P.; Chen, C. Integrating isotope mass balance and water residence time dating: Insights of runoff generation in small permafrost watersheds from stable and radioactive isotopes. J. Radioanal. Nucl. Chem. 2020, 326, 241–254. [Google Scholar] [CrossRef]
- Ben Ammar, S.; Taupin, J.-D.; Ben Alaya, M.; Zouari, K.; Patri, N.; Khouatmia, M. Using geochemical and isotopic tracers to characterize groundwater dynamics and salinity sources in the Wadi Guenniche coastal plain in northern Tunisia. J. Arid Environ. 2020, 178, 104150. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using water stable isotopes for identifying groundwater recharge sources of the unconfined alluvial Zagreb aquifer (Croatia). Water 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Mahlangu, S.; Lorentz, S.; Diamond, R.; Dippenaar, M. Surface water-groundwater interaction using tritium and stable water isotopes: A case study of Middelburg, South Africa. J. Afr. Earth Sci. 2020, 171, 103886. [Google Scholar] [CrossRef]
- Ala-aho, P.; Soulsby, C.; Pokrovsky, O.S.; Kirpotin, J.; Serikova, S.; Vorobyev, S.N.; Manasypov, R.M.; Loiko, S.; Tetzlaff, D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kocman, D.; Miljević, N.; Vreča, P.; Vrzel, J.; Povinec, P. Distribution of H and O stable isotopes in the surface waters of the Sava River, the major tributary of the Danube River. J. Hydrol. 2018, 565, 365–373. [Google Scholar] [CrossRef]
- Chen, K.; Meng, Y.; Liu, G.; Xia, C.; Zhou, J.; Li, H. Identifying hydrological conditions of the Pihe River catchment in the Chengdu Plain based on spatio-temporal distribution of 2H and 18O. J. Radioanal. Nucl. Chem. 2020, 324, 1125–1140. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Meng, Y.; Wang, Z.; Zhang, X. Impact of human activities on urban river system and its implication for water environment risks: An isotope-based investigation in Chengdu, China. Hum. Ecol. Risk Assess. 2020, 27, 1416–1439. [Google Scholar] [CrossRef]
- Rosa, E.; Hillaire-Marcel, C.; Hélie, J.F.; Myre, A. Processes governing the stable isotope composition of water in the St. Lawrence river system, Canada. Isot. Environ. Health Stud. 2016, 52, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Zhang, M.J.; Hughes, C.E.; Zhu, X.F.; Dong, L.; Ren, Z.G.; Chen, F.L. Factors controlling stable isotope composition of precipitation in arid conditions: An observation network in the Tianshan Mountains, central Asia. Tellus B Chem. Phys. Meteorol. 2016, 68, 26206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.J.; Wang, S.J. A review of precipitation isotope studies in China: Basic pattern and hydrological process. J. Geogr. Sci. 2016, 26, 921–938. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.J.; Wang, S.J. Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia. Sci. Cold Arid Reg. 2018, 10, 27–37. [Google Scholar] [CrossRef]
- Krajcar-Bronić, I.; Barešić, J.; Borković, D.; Sironić, A.; Lovrenčić Mikelić, I.; Vreča, P. Long-Term Isotope Records of Precipitation in Zagreb, Croatia. Water 2020, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Brkić, Ž.; Kuhta, M.; Hunjak, T.; Larva, O. Regional Isotopic Signatures of Groundwater in Croatia. Water 2020, 12, 1983. [Google Scholar] [CrossRef]
- Volkmann, T.H.M.; Weiler, M. Continual in situ monitoring of pore water stable isotopes in the subsurface. Hydrol. Earth Syst. Sci. 2014, 18, 1819–1833. [Google Scholar] [CrossRef] [Green Version]
- Gaj, M.; Beyer, M.; Koeniger, P.; Wanke, H.; Hamutoko, J.; Himmelsbach, T. In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: A soil water balance. Hydrol. Earth Syst. Sci. 2016, 20, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Song, W.; Wu, J.; Liu, Z.; Wei, Z. Identifying the mean residence time of soil water for different vegetation types in a water source area of the Yuanyang Terrace, southwestern China. Isot. Environ. Health Stud. 2019, 55, 272–289. [Google Scholar] [CrossRef]
- Skrzypek, G.; Mydlowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J.J.; Grierson, P.F. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J. Hydrol. 2015, 523, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Zhang, M.J.; Che, Y.J.; Zhu, X.F.; Liu, X.M. Influence of below-cloud evaporation on deuterium excess in precipitation of arid central Asia and its meteorological controls. J. Hydrometeorol. 2016, 17, 1973–1984. [Google Scholar] [CrossRef]
- Wang, D.; Han, G.; Hu, M.; Wang, Y.; Liu, J.; Zeng, J.; Li, X. Evaporation Processes in the Upper River Water of the Three Gorges Reservoir: Evidence from Triple Oxygen Isotopes. ACS Earth Space Chem. 2021, 5, 2807–2816. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2015, 9, 161–167. [Google Scholar] [CrossRef]
- Gampe, D.; Nikulin, G.; Ludwig, R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ. 2016, 573, 1503–1518. [Google Scholar] [CrossRef]
- Vrzel, J.; Ludwig, R.; Gampe, D.; Ogrinc, N. Hydrological system behaviour of an alluvial aquifer under climate change. Sci. Total Environ. 2019, 649, 1179–1188. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Barešić, J.; Parlov, J. Nitrate Origin in the Zagreb Aquifer System. Geofluids 2018, 15, 2789691. [Google Scholar] [CrossRef] [Green Version]
- Kapuralić, J.; Posavec, K.; Kurevija, T.; Macenić, M. Identification of river Sava temperature influence on groundwater temperature of the Zagreb and Samobor-Zaprešić aquifer as a part of shallow geothermal potential. Rud. Geološko-Naft. Zb. 2018, 33, 59–69. [Google Scholar] [CrossRef]
- Barešić, J.; Parlov, J.; Kovač, Z.; Sironić, A. Use of nuclear power plant released tritium as groundwater tracer. Rud. Geološko-Naft. Zb. 2020, 35, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Kovač, Z.; Krevh, V.; Filipović, L.; Defterdarović, J.; Buškulić, B.; Han, L.; Filipović, V. Utilizing stable water isotopes (δ2H and δ18O) to study soil-water origin in sloped vineyard: First results. Rud. Geološko-Naft. Zb. 2022, 37, 1–14. [Google Scholar] [CrossRef]
- Horvatinčić, N.; Barešić, J.; Krajcar Bronić, I.; Obelić, B.; Kármán, K.; Fórizs, I. Study of the bank filtered groundwater system of the Sava River at Zagreb using isotope analyses. Cent. Eur. Geol. 2011, 54, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Parlov, J.; Kovač, Z.; Barešić, J. The study of the interactions between Sava River and Zagreb aquifer system (Croatia) using water stable isotopes. In Proceedings of the 16th International Symposium on Water-Rock Interaction and the 13th International Symposium on Applied Isotope Geochemistry 2019, Tomsk, Russia, 21–26 July 2019. [Google Scholar]
- Meaški, H.; Biondić, R.; Loborec, J.; Oskoruš, D. The Possibility of Managed Aquifer Recharge (MAR) for Normal Functioning of the Public Water-Supply of Zagreb, Croatia. Water 2021, 13, 1562. [Google Scholar] [CrossRef]
- Velić, J.; Saftić, B. Subsurface Spreading and Facies Characteristics of Middle Peistocene Deposits between Zaprešić and Samobor. Geološki Vjesn. 1991, 44, 69–82. [Google Scholar]
- Velić, J.; Durn, G. Alternating Lacustrine-Marsh Sedimentation and Subaerial Exposure Phases during Quaternary: Prečko, Zagreb, Croatia. Geol. Croat. 1993, 46, 71–90. [Google Scholar] [CrossRef]
- Ružičić, S.; Mileusnić, M.; Posavec, K. Building Conceptual and Mathematical Model for Water Flow and Solute Transport in the Unsaturated zone at Kosnica Site. Rud.-Geološko-Naft. Zb. 2012, 25, 21–31. [Google Scholar]
- Bogunović, M.; Vidaček, Ž.; Husnjak, S.; Sraka, M.; Petošić, D. Inventory of Soils in Croatia. Agric. Conspec. Sci. 1998, 63, 105–112. [Google Scholar]
- Sollitto, D.; Romić, M.; Castrignano, A.; Romić, D.; Bakić, H. Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena 2010, 80, 182–194. [Google Scholar] [CrossRef]
- Posavec, K.; Vukojević, P.; Ratkaj, M.; Bedeniković, T. Cross-correlation modelling of surface water-groundwater interaction using the Excel spreadsheet application. Rud.-Geološko-Naft. Zb. 2017, 32, 25–32. [Google Scholar] [CrossRef]
- Posavec, K. Identification and Prediction of Minimum Ground Water Levels of Zagreb Alluvial Aquifer using Recession Curve Models. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2006. (In Croatian). [Google Scholar]
- Nakić, Z.; Posavec, K.; Parlov, J.; Bačani, A. Development of the conceptual model of the Zagreb aquifer system. In The Geology in Digital Age, Proceedings of the 17th Meeting of the Association of European Geological Societies (MAEGS 17), Belgrade, Serbia, 17–18 September 2011; The Serbian Geological Society: Belgrade, Serbia, 2011. [Google Scholar]
- Nakić, Z.; Ružičić, S.; Posavec, K.; Mileusnić, M.; Parlov, J.; Bačani, A.; Durn, G. Conceptual model for groundwater status and risk assessment—Case study of the Zagreb aquifer system. Geol. Croat. 2013, 66, 55–76. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Pavlić, K. Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system. Geol. Croat. 2017, 70, 93–103. [Google Scholar] [CrossRef]
- Marković, T.; Brkić, Ž.; Larva, O. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Sci. Total Environ. 2013, 458–460, 508–516. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Špoljarić, D.; Stanek, D.; Bačani, A. Estimation of nitrate trends in the groundwater of the Zagreb aquifer. Geosciences 2018, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Huljek, L.; Perković, D.; Kovač, Z. Nitrate contamination risk of the Zagreb aquifer. J. Maps 2019, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Vujević, M.; Posavec, K. Identification of Groundwater Level Decline in the Zagreb and Samobor-Zapresic Aquifers since the Sixties of the Twentieth Century. Rud.-Geološko-Naft. Zb. 2018, 33, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, P.; Soulsby, C.; Waldon, S.; Tetzlaff, D. Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment. Hydrol. Earth Syst. Sci. 2005, 9, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreča, P. Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J. Hydrol. 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Maloszewski, P.; Raupert, W.; Stichler, W.; Herrmann, A. Application for flow models in an alpine catchment area using tritium and deuterium data. J. Hydrol. 1983, 66, 319–330. [Google Scholar] [CrossRef]
- Coplen, T.B.; Wassenaar, L.I. LIMS for Lasers for achieving long-term accuracy and precision of δ2H, δ17O, and δ18O of waters using laser absorption spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2122–2130. [Google Scholar] [CrossRef]
Bridge PM | ||||
---|---|---|---|---|
Parameter | Temp. (°C) | pH | O2 (mg/L) | EC (μS/cm) |
Average | 13.95 | 8.25 | 10.99 | 397.96 |
Median | 12.10 | 8.23 | 11.31 | 406.50 |
Minimum | 5.80 | 7.97 | 7.73 | 301.00 |
Maximum | 23.20 | 8.58 | 13.43 | 457.00 |
Standard deviation | 5.74 | 0.18 | 1.50 | 39.92 |
N (number of sampling campaigns) | 24 | 24 | 24 | 24 |
Bridge DM | ||||
Parameter | Temp. (°C) | pH | O2 (mg/L) | EC (μS/cm) |
Average | 14.40 | 8.32 | 10.30 | 447.70 |
Median | 12.80 | 8.36 | 10.33 | 417.00 |
Minimum | 4.00 | 7.90 | 6.28 | 282.00 |
Maximum | 27.60 | 8.88 | 15.90 | 1027.00 |
Standard deviation | 6.08 | 0.22 | 1.65 | 139.13 |
N (number of sampling campaigns) | 65 | 64 | 62 | 61 |
Location | Parameter | δ2H (‰) | δ18O (‰) | d-excess (‰) |
---|---|---|---|---|
Groundwater | Average | −62.07 | −9.17 | 11.26 |
Median | −62.02 | −9.17 | 11.39 | |
Minimum | −65.21 | −9.89 | 4.09 | |
Maximum | −56.15 | −7.53 | 17.44 | |
Standard deviation | 1.16 | 0.22 | 1.42 | |
N (number of sampling campaigns) | 266 | |||
Bridge PM | Average | −58.15 | −8.82 | 12.38 |
Median | −58.83 | −8.93 | 12.49 | |
Minimum | −62.58 | −9.57 | 7.86 | |
Maximum | −52.98 | −7.84 | 13.98 | |
Standard deviation | 2.40 | 0.38 | 1.22 | |
N (number of sampling campaigns) | 24 | |||
Bridge DM | Average | −59.37 | −8.85 | 11.46 |
Median | −59.88 | −8.92 | 11.65 | |
Minimum | −70.16 | −10.29 | 4.90 | |
Maximum | −24.87 | −3.87 | 13.36 | |
Standard deviation | 5.52 | 0.79 | 1.29 | |
N (number of sampling campaigns) | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, Z.; Barešić, J.; Parlov, J.; Sironić, A. Impact of Hydrological Conditions on the Isotopic Composition of the Sava River in the Area of the Zagreb Aquifer. Water 2022, 14, 2263. https://doi.org/10.3390/w14142263
Kovač Z, Barešić J, Parlov J, Sironić A. Impact of Hydrological Conditions on the Isotopic Composition of the Sava River in the Area of the Zagreb Aquifer. Water. 2022; 14(14):2263. https://doi.org/10.3390/w14142263
Chicago/Turabian StyleKovač, Zoran, Jadranka Barešić, Jelena Parlov, and Andreja Sironić. 2022. "Impact of Hydrological Conditions on the Isotopic Composition of the Sava River in the Area of the Zagreb Aquifer" Water 14, no. 14: 2263. https://doi.org/10.3390/w14142263
APA StyleKovač, Z., Barešić, J., Parlov, J., & Sironić, A. (2022). Impact of Hydrological Conditions on the Isotopic Composition of the Sava River in the Area of the Zagreb Aquifer. Water, 14(14), 2263. https://doi.org/10.3390/w14142263