Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostic Method
2.2. Sampling Point and Index Analytical Methods
2.2.1. Sampling Points in WWTPs
2.2.2. Analytical Methods
Nitrification Rate
Denitrification Rate
Denitrification Potential
Phosphorus Release Rate
Static Simulation for Enhancing Nitrogen Removal
- The nitrogen removal performance of the CAST process
- b.
- Static simulation for enhancing nitrogen removal
Screening of Phosphorus Removal Chemicals
3. Results and Discussion
3.1. Diagnosis for Nitrogen Removal in the CAST Process
3.1.1. Analysis of Influent and Effluent Nitrogen
3.1.2. Microbial Activity of Activated Sludge for Nitrogen Removal
Nitrification Rate
Denitrification Rate
3.1.3. Simulation and Optimization for TN Removal
3.1.4. Modeling and Optimization Control
Process Operation Parameters
Optimization of Reflux Ratio
Simulation of Agitation Period
3.1.5. Effect of Process Optimization and Control
3.2. Diagnosis for Phosphorus Removal in the CAST Process
3.2.1. Analysis of Influent and Effluent Phosphorus
3.2.2. Microbial Activity of Activated Sludge for Phosphorus Removal
Phosphorus Release Rate
Microbial Community Structure
3.2.3. Optimization for Phosphorus Removal
Chemical and Biological Phosphorus Removal
Optimization for Phosphorus Removal Agents
3.2.4. Effect of Process Optimization and Control
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.H.; Yang, W.N.; Ngo, H.H.; Guo, W.S.; Jin, P.K.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Sányi, P.; Bárdos, L.; Roychoudhury, S.; Stawarz, R. Toxic/Hazardous substances and environmental engineering. Foreword 2012, 47, 1201. [Google Scholar]
- Goronszy, M.C. The cyclic activated system for resort area wastewater treatment. Water Sci. Technol. 1995, 32, 105–114. [Google Scholar] [CrossRef]
- Goronszy, M.C. Co-current nitrification/denitrification and biological P-removal in cyclic activated sludge system plants by redox controlled cycle operation. Water Sci. Technol. 1997, 35, 215–224. [Google Scholar]
- Wang, S.; Liu, Y.; Yu, J.; Zhang, L.; Fan, Z.; Sun, L. Study on the performance of CAST process for phosphate removal under conventional operation mode. Environ. Pollut. Control 2010, 32, 9–13. [Google Scholar]
- Clescerl, L.S. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Wang, S.; Zhi, L.; Shan, W.; Lu, H.; Xu, Q.; Li, J. Correlation of extracellular polymeric substances and microbial community structure in denitrification biofilm exposed to adverse conditions. Microb. Biotechnol. 2020, 13, 1889–1903. [Google Scholar] [CrossRef] [PubMed]
- Myński, D.; Myńska, A.; Chmielowski, K.; Pawełek, J. Investigation of the Wastewater Treatment Plant Processes Efficiency Using Statistical Tools. Sustainability 2020, 12, 10522. [Google Scholar] [CrossRef]
- Huang, H.; Yang, J.; Li, D. Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product. Bioresour. Technol. 2014, 172, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Peng, Y.; Li, B.; Guo, J.; Yang, Q.; Wang, S. Biological removal of nitrogen from wastewater. Rev. Environ. Contam. Toxicol. 2008, 192, 159–195. [Google Scholar] [PubMed]
- Schmidt, I.; Sliekers, O.; Schmid, M.; Bock, E.; Fuerst, J.; Kuenen, J.G.; Jetten, M.S.; Strous, M. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol. Rev. 2006, 27, 481–492. [Google Scholar] [CrossRef][Green Version]
- Chen, G.H.; Ozaki, H.; Terashima, Y. Endogenous Denitrification in Biofilm. Water Sci. Technol. 1992, 26, 523–534. [Google Scholar] [CrossRef]
- Dhamole, P.B.; D’Souza, S.F.; Lele, S.S. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste. J. Inst. Eng. India Ser. E 2015, 96, 63. [Google Scholar] [CrossRef]
- Chen, Y.; Randall, A.A.; Mc, C.T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res. 2004, 38, 27–36. [Google Scholar] [CrossRef]
- Graaff, D.; Loosdrecht, M.; Pronk, M. Biological phosphorus removal in seawater-adapted aerobic granular sludge. Water Res. 2020, 172, 115531. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Zhang, K.; Zhang, G.; Zhang, H.; Zhang, D.; Lv, P.; Wu, J. Nutrient removal by full-scale Bi-Bio-Selector for Nitrogen and Phosphorus removal process treating urban domestic sewage at low C/N ratio and low temperature conditions. Process Saf. Environ. Prot. 2020, 140, 199–210. [Google Scholar] [CrossRef]
- Merzouki, M.; Bernet, N.; Delgenès, J.P.; Benlemlih, M. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater. Bioresour. Technol. 2005, 96, 1317–1322. [Google Scholar] [CrossRef]
- Adav, S.S.; Lee, D.J.; Show, K.Y.; Tay, J.H. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.G.; Dai, R.; Liu, H.B.; Zhao, J.F.; Xia, S.Q. Influence of Community Structure of Phosphorus Removing Bacteria Under Oxygen Contain in Processes For Phosphorus Removal. Environ. Sci. 2008, 29, 474–481. [Google Scholar]
- Liu, Y.; Shi, H.; Li, W.; Hou, Y.; He, M. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal. Bioresour. Technol. 2011, 10, 4008–4012. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wen, X.; Yan, H.; Ding, K.; Zhao, F.; Hu, M. Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour. Technol. 2011, 102, 2352–2367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shao, M.-F.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2011, 6, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Xia, Y.; Nielsen, J.L.; Nielsen, P.H. Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology 2007, 153, 4061. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silva, A.F.; Carvalho, G.; Oehmen, A.; Lousada-Ferreira, M.; van Nieuwenhuijzen, A.; Reis, M.A.; Crespo, M. Microbial population analysis of nutrient removal-related organisms in membrane bioreactors. Appl. Microbiol. Biotechnol. 2012, 93, 2171–2180. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ma, H.; Gao, X.; Chen, Y.; Zhu, J.; Liu, T. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity. Environ. Pollut. 2021, 287, 117668. [Google Scholar] [CrossRef] [PubMed]
- Kortstee, G.J.; Appeldoorn, K.J.; Bonting, C.F.; van Niel, E.W.; van Veen, H.W. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiol. Rev. 1994, 15, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Huang, C.; Feng, X.; Li, Y.; Yang, H.; Wang, S.; Li, J. Upgradation of sludge deep dewatering conditioners through persulfate activated by ferrous: Compatibility with sludge incineration, dewatering mechanism, ecological risks elimination and carbon emission performance. Environ. Res. 2022, 211, 113024. [Google Scholar] [CrossRef]
Group | First-Stage Denitrification Rate (mgNO3−–N/(gVSS·h)) | Second-Stage Denitrification Rate (mgNO3−–N/(gVSS·h)) | Third-Stage Denitrification Rate (mgNO3−–N/(gVSS·h)) |
---|---|---|---|
Denitrification rate | 1.16 | 0.55 | 0.25 |
Denitrification potential | 2.84 | / | / |
Endogenous denitrification | 0.39 | / | / |
Reflux Ratio | Outlet Concentration (mg/L) | ||||
---|---|---|---|---|---|
COD | BOD5 | Ammonia Nitrogen | TN | TP | |
10% | 26.90 | 2.22 | 1.24 | 10.62 | 0.01 |
20% | 26.54 | 1.93 | 1.41 | 10.22 | 0.01 |
60% | 25.97 | 1.48 | 2.07 | 10.07 | 0.01 |
100% | 25.80 | 1.24 | 2.31 | 9.82 | 0.01 |
CAST Operation (min) | Effluent Concentration (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|
Agitation | Aeration | Precipitation | Discharge | COD | BOD5 | Ammonia Nitrogen | TN | TP |
0 | 120 | 60 | 60 | 25.97 | 1.48 | 1.07 | 10.07 | 0.01 |
40 | 80 | 60 | 60 | 27.46 | 2.45 | 2.60 | 8.10 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Qian, K.; Li, Y. Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant. Water 2022, 14, 2253. https://doi.org/10.3390/w14142253
Liu C, Qian K, Li Y. Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant. Water. 2022; 14(14):2253. https://doi.org/10.3390/w14142253
Chicago/Turabian StyleLiu, Chong, Kai Qian, and Yuguang Li. 2022. "Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant" Water 14, no. 14: 2253. https://doi.org/10.3390/w14142253