Nitrogen Removal from the Simulated Wastewater of Ionic Rare Earth Mining Using a Biological Aerated Filter: Influence of Medium and Carbon Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Reactor Description, Start-Up and Operation
2.3. Analytic Methods
2.4. Characterization of Filter Media
2.5. Analysis of Microbial Community
3. Results and Discussions
3.1. Physical Characteristics of Filter Media
3.2. Start-Up Performance of Reactors
3.3. Influence of C/N Ratio on the Performance of N Removal
3.4. Influence of Hydraulic Loading Rate on the Performance of N Removal
3.5. Influence of Carbon Source on the Performance of N Removal
3.5.1. Water-Soluble Carbon Source
3.5.2. Solid Carbon Source
3.6. Bacterial Community Analysis
3.6.1. Diversity of Bacterial Community
3.6.2. Composition of Bacterial Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yin, S.; Chen, K.; Srinivasakannan, C.; Guo, S.; Li, S.; Peng, J.; Zhang, L. Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology. Chem. Eng. J. 2018, 337, 515–521. [Google Scholar] [CrossRef]
- Darestani, M.; Haigh, V.; Couperthwaite, S.J.; Millar, G.J.; Nghiem, L.D. Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. J. Environ. Chem. Eng. 2017, 5, 1349–1359. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Wang, N.; An, S.; Cai, C.; Peng, J.; Xie, M.; Peng, J.; Song, X. Synthesis of novel hierarchical porous zeolitization ceramsite from industrial waste as efficient adsorbent for separation of ammonia nitrogen. Sep. Purif. Technol. 2022, 297, 121418. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 2006, 73, 15–26. [Google Scholar] [CrossRef]
- Carrera, J.; Baeza, J.A.; Vicent, T.; Lafuente, J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Res. 2003, 37, 4211–4221. [Google Scholar] [CrossRef]
- Pujol, R.; Hamon, M.; Kandel, X.; Lemmel, H. Biofilters: Flexible, reliable biological reactors. Water Sci. Technol. 1994, 29, 33–38. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Araújo, V.L.d.; Chernicharo, C.A.L. Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatment. Water Sci. Technol. 1998, 38, 189–195. [Google Scholar] [CrossRef]
- Rahimi, Y.; Torabian, A.; Mehrdadi, N.; Shahmoradi, B. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J. Hazard. Mater. 2011, 185, 852–857. [Google Scholar] [CrossRef]
- Müller, N. Implementing biofilm carriers into activated sludge process—15 years of experience. Water Sci. Technol. 1998, 37, 167–174. [Google Scholar] [CrossRef]
- Ji, G.; Tong, J.; Tan, Y. Wastewater treatment efficiency of a multi-media biological aerated filter (MBAF) containing clinoptilolite and bioceramsite in a brick-wall embedded design. Bioresour. Technol. 2011, 102, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, Y.; Wang, W.; Li, B.; Zhao, K.; Kou, X.; Wu, S.; Shao, T. Simultaneous partial nitritation, anammox, and denitrification process for the treatment of simulated municipal sewage in a single-stage biofilter reactor. Chemosphere 2022, 287, 131974. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, J.; Wang, J.; Xu, H.; Song, X.; Wang, Y.; Li, F.; Liu, Y.; Bai, J. Correlating microbial community structure with operational conditions in biological aerated filter reactor for efficient nitrogen removal of municipal wastewater. Bioresour. Technol. 2018, 250, 374–381. [Google Scholar] [CrossRef]
- An, Y.; Li, S.; Wang, X.; Liu, Y.; Wang, R. Correlating Microbial Community Characteristics with Environmental Factors along a Two-Stage Biological Aerated Filter. Water 2020, 12, 3317. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Chen, X.; Yang, Y.; Gu, X. Pilot study of nitrogen removal from landfill leachate by stable nitritation-denitrification based on zeolite biological aerated filter. Waste Manag. 2019, 100, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Zhang, R.; He, Z.; Zhou, J.; Wu, M.; Xu, Z.; Chi, R.; Yang, H. Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy 2020, 193, 105295. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.; Stephenson, T. A review of biological aerated filters (BAFs) for wastewater treatment. Environ. Eng. Sci. 1999, 16, 201–216. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Zhang, X. Simultaneous ammonia nitrogen and phosphorus removal from micro-polluted water by biological aerated filters with different media. Water Air Soil Pollut. 2020, 231, 234. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, Y.; Duan, Q.; Tan, J.; Zhao, C. The characteristic research of ammonium removal in grain-slag biological aerated filter (BAF). Desalination 2010, 263, 146–150. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, S.; Wang, G.; Du, M.a. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media. Bioresour. Technol. 2010, 101, 7245–7251. [Google Scholar] [CrossRef]
- Constantin, H.; Fick, M. Influence of C-sources on the denitrification rate of a high–nitrate concentrated industrial wastewater. Water Res. 1997, 31, 583–589. [Google Scholar] [CrossRef]
- Xu, Z.; Dai, X.; Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 2018, 634, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Her, J.-J.; Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 1995, 54, 45–51. [Google Scholar] [CrossRef]
- Liang, X.; Lin, L.; Ye, Y.; Gu, J.; Wang, Z.; Xu, L.; Jin, Y.; Ru, Q.; Tian, G. Nutrient removal efficiency in a rice-straw denitrifying bioreactor. Bioresour. Technol. 2015, 198, 746–754. [Google Scholar] [CrossRef]
- Chang, J.; Ma, L.; Zhou, Y.; Zhang, S.; Wang, W. Remediation of nitrate-contaminated wastewater using denitrification biofilters with straws of ornamental flowers added as carbon source. Water Sci. Technol. 2016, 74, 416–423. [Google Scholar] [CrossRef][Green Version]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Zhang, Y.; Zhang, X. Effects of HRT on the efficiency of denitrification and carbon source release in constructed wetland filled with bark. Water Sci. Technol. 2017, 75, 2908–2915. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Makarem, M.; Lee, C.M.; Kafle, K.; Huang, S.; Chae, I.; Yang, H.; Kubicki, J.D.; Kim, S.H. Probing cellulose structures with vibrational spectroscopy. Cellulose 2019, 26, 35–79. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Y.; Shen, Q.; Mao, Y.; Zhang, Q.; Ji, F. The metabolic patterns of the complete nitrates removal in the biofilm denitrification systems supported by polymer and water-soluble carbon sources as the electron donors. Bioresour. Technol. 2021, 342, 126002. [Google Scholar] [CrossRef]
- Henze, M. Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Technol. 1991, 23, 669–679. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, S.; Li, Y.; Tian, J.; Zhang, C. Structure, physicochemical properties and effects on nutrients digestion of modified soluble dietary fiber extracted from sweet potato residue. Food Res. Int. 2021, 150, 110761. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qi, J.; Chi, L.; Wang, D.; Wang, Z.; Li, K.; Li, X. Production of sorption functional media (SFM) from clinoptilolite tailings and its performance investigation in a biological aerated filter (BAF) reactor. J. Hazard. Mater. 2013, 246–247, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Chen, T.; Wille, M.-L.; Chen, D.; Bian, J.; Qing, C.; Wu, W.; Frost, R.L. Advanced wastewater treatment with autoclaved aerated concrete particles in biological aerated filters. J. Water Process Eng. 2016, 9, 188–194. [Google Scholar] [CrossRef]
- Wen, D.; Ho, Y.S.; Tang, X. Comparative sorption kinetic studies of ammonium onto zeolite. J. Hazard. Mater. 2006, 133, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yu, G.; Liu, Z.; Tang, J.; Liu, J. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity. Bioresour. Technol. 2018, 254, 157–165. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Zeng, L.; Dai, W. Investigation on the preparation and properties of reticulate porous ceramic for organism carrier in sewage disposal. J. Ceramic Process. Res. 2016, 17, 1095–1099. [Google Scholar]
- Galvez, A.; Zamorano, M.; Ramos-Ridao, A.F. Efficiency of a biological aerated filter for the treatment of leachate produced at a landfill receiving non-recyclable waste. J. Environ. Sci. Health A 2012, 47, 54–59. [Google Scholar] [CrossRef]
- Yue, X.; Yu, G.; Lu, Y.; Liu, Z.; Li, Q.; Tang, J.; Liu, J. Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter. Bioresour. Technol. 2018, 254, 67–74. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G.; Smith, M.O. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol. 2004, 114, 289–297. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef]
- Volokita, M.; Abeliovich, A.; Soares, M.I.M. Denitrification of groundwater using cotton as energy source. Water Sci. Technol. 1996, 34, 379–385. [Google Scholar] [CrossRef]
- Shao, L.; Xu, Z.; Jin, W.; Yin, H. Rice husk as carbon source and biofilm carrier for water denitrification. Pol. J. Environ. Stud. 2009, 18, 693–699. [Google Scholar] [CrossRef]
- Luo, Z.; Li, S.; Zhu, X.; Ji, G. Carbon source effects on nitrogen transformation processes and the quantitative molecular mechanism in long-term flooded constructed wetlands. Ecol. Eng. 2018, 123, 19–29. [Google Scholar] [CrossRef]
- Cameron, S.G.; Schipper, L.A. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecol. Eng. 2010, 36, 1588–1595. [Google Scholar] [CrossRef]
- Jiang, F.; Qi, Y.; Shi, X. Effect of liquid carbon sources on nitrate removal, characteristics of soluble microbial products and microbial community in denitrification biofilters. J. Clean. Prod. 2022, 339, 130776. [Google Scholar] [CrossRef]
- Li, Y.; Guo, J.; Li, H.; Song, Y.; Chen, Z.; Lu, C.; Han, Y.; Hou, Y. Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresour. Technol. 2020, 296, 122340. [Google Scholar] [CrossRef]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef]
- Antwi, P.; Zhang, D.; Su, H.; Luo, W.; Quashie, F.K.; Kabutey, F.T.; Xiao, L.; Lai, C.; Liu, Z.; Li, J. Nitrogen removal from landfill leachate by single-stage anammox and partial-nitritation process: Effects of microaerobic condition on performance and microbial activities. J. Water Process. Eng. 2020, 38, 101572. [Google Scholar] [CrossRef]
- Ren, T.; Chi, Y.; Wang, Y.; Shi, X.; Jin, X.; Jin, P. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. Water Res. 2021, 206, 117742. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, Z.; Liu, Y.; Cao, T.; Zhang, H.; Hao, M.; Chen, R.; Dzakpasu, M.; Wang, X.C. Phytoremediation mechanisms and plant eco-physiological response to microorganic contaminants in integrated vertical-flow constructed wetlands. J. Hazard. Mater. 2022, 424, 127611. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Gao, L.; Xu, S.; Chen, X.; Tian, H.; Kang, X. Performance and microbial community of a novel combined anaerobic bioreactor integrating anaerobic baffling and anaerobic filtration process for low-strength rural wastewater treatment. Environ. Sci. Pollut. Res. 2020, 27, 18743–18756. [Google Scholar] [CrossRef] [PubMed]
Parameter | CODCr (mg/L) | NH4+-N (mg/L) | TN (mg/L) | TP (mg/L) | pH | TSS |
---|---|---|---|---|---|---|
Range | 10~30 | 40~70 | 60~130 | 0.01~0.5 | 4.0~6.0 | 10~20 |
Standards * | 70 | 15 | 30 | 1 | 6.0~9.0 | 50 |
Parameter/Media | Volcanic | Zeolite | Quartz | Ceramisite | |
---|---|---|---|---|---|
Size (mm) | 3~6 | 3~6 | 2~4 | 8~10 | |
Surface area (m2/g) | Original | 17.5 a | 16.4 b | 0.3 b | 13.3 a |
Aerobic stage | 10.8 | 14.7 | n.a. | 16.1 | |
Anoxic stage | 5.8 | 15.4 | n.a. | 19.8 | |
Porosity (%) | 25.5 a | 2.3 b | 0.1 b | 76.9 a | |
Density (g/cm3) | 2.15 a | 2.17 c | 2.61 c | 0.49 a |
Experimental Conditions | Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | Medium | Carbon | Stage | HLR | OTUs | Chao | Ace | Simpson | Shannon | Coverage |
VN | Volcanic | / | Nitrification | 0.7 | 737 | 934.5 | 920.4 | 0.833 | 2.86 | 0.996 |
ZN | Zeolite | / | 468 | 587.0 | 593.2 | 0.789 | 2.70 | 0.996 | ||
QN | Quartz | / | 992 | 1115.0 | 1067.0 | 0.969 | 4.29 | 0.998 | ||
CN | Ceramisite | / | 1027 | 1146.1 | 1120.8 | 0.948 | 3.98 | 0.997 | ||
VAD2 | Volcanic | Acetate | Denitrification | 1.4 | 786 | 955.5 | 957.2 | 0.955 | 4.26 | 0.995 |
ZAD2 | Zeolite | 625 | 808.7 | 794.5 | 0.948 | 4.04 | 0.993 | |||
QAD2 | Quartz | 364 | 596.6 | 582.2 | 0.929 | 3.91 | 0.997 | |||
CAD2 | Ceramisite | 303 | 445.7 | 485.6 | 0.882 | 3.56 | 0.997 | |||
VAD | Volcanic | Acetate | 0.7 | 660 | 891.0 | 875.2 | 0.925 | 3.44 | 0.996 | |
ZAD | Zeolite | 730 | 953.3 | 960.3 | 0.914 | 3.31 | 0.995 | |||
QAD | Quartz | 717 | 961.0 | 932.8 | 0.942 | 3.70 | 0.991 | |||
CAD | Ceramisite | 737 | 948.0 | 973.1 | 0.940 | 3.69 | 0.995 | |||
VGD | Volcanic | Glucose | 813 | 1027.0 | 1031.5 | 0.967 | 4.34 | 0.993 | ||
ZGD | Zeolite | 742 | 1018.3 | 934.8 | 0.972 | 4.39 | 0.994 | |||
QGD | Quartz | 656 | 878.0 | 878.6 | 0.943 | 4.00 | 0.994 | |||
CGD | Ceramisite | 784 | 974.2 | 935.7 | 0.964 | 4.21 | 0.994 | |||
VMD | Volcanic | Methanol | 846 | 1037.2 | 1048.1 | 0.969 | 4.42 | 0.994 | ||
ZMD | Zeolite | 734 | 917.1 | 917.6 | 0.971 | 4.40 | 0.994 | |||
QMD | Quartz | 735 | 943.3 | 936.2 | 0.958 | 4.05 | 0.997 | |||
CMD | Ceramisite | 564 | 751.8 | 740.4 | 0.906 | 3.62 | 0.991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wu, C.; Song, B.; Antwi, P.; Chen, M.; Luo, W. Nitrogen Removal from the Simulated Wastewater of Ionic Rare Earth Mining Using a Biological Aerated Filter: Influence of Medium and Carbon Source. Water 2022, 14, 2246. https://doi.org/10.3390/w14142246
Chen S, Wu C, Song B, Antwi P, Chen M, Luo W. Nitrogen Removal from the Simulated Wastewater of Ionic Rare Earth Mining Using a Biological Aerated Filter: Influence of Medium and Carbon Source. Water. 2022; 14(14):2246. https://doi.org/10.3390/w14142246
Chicago/Turabian StyleChen, Silin, Chengxiu Wu, Benru Song, Philip Antwi, Ming Chen, and Wuhui Luo. 2022. "Nitrogen Removal from the Simulated Wastewater of Ionic Rare Earth Mining Using a Biological Aerated Filter: Influence of Medium and Carbon Source" Water 14, no. 14: 2246. https://doi.org/10.3390/w14142246