Hydrochemical Characteristics and the Genetic Mechanism of Low–Medium Temperature Geothermal Water in the Northwestern Songliao Basin
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling Sites
3.2. Sampling and Analytical Methods
3.3. Geothermometry
4. Results
4.1. Hydrochemistry and Cluster Analysis
4.1.1. Clustering Features
4.1.2. Hydrochemical Characteristics
4.1.3. Ionic Characteristics
4.2. Isotopic Characteristics
4.2.1. H and O Isotopes
4.2.2. C Isotopes
5. Discussion
5.1. Water–Rock Interactions
5.1.1. Lixiviation
5.1.2. Cation Exchange and Adsorption
5.2. Temperature Estimates in the Geothermometer
- (1)
- Cation geothermometry
- (2)
- SiO2 geothermometry
- (3)
- Theoretical chemical geothermometry
5.3. Reservoir Temperature and Circulation Depth
5.4. Recharge Source of Geothermal Water
5.5. Conceptual Circulation of the Geothermal Water
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, Y.; Pang, Z.; Shao, H.; Hu, S.; Kolditz, O. Recent studies on hydrothermal systems in China: A review. Geotherm. Energy 2014, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Wang, Y.; Wang, Z.; Regenauer-Lieb, K.; Zhang, K.; Liu, J. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan fault zone of southern China. J. Hydrol. 2018, 567, 339–350. [Google Scholar] [CrossRef]
- Wang, G.; Li, K.; Wen, D.; Lin, W.; Lin, L.; Liu, Z.; Zhang, W.; Ma, F.; Wang, W. Assessment of geothermal resources in China. In Thirty-Eighth Workshop on Geothermal Reservoir Engineering; Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Wang, G.; Zhang, W.; Liang, J.; Lin, W.; Liu, Z.; Wang, W. Evaluation of Geothermal Resources Potential in China. Acta Geosci. Sin. 2017, 38, 448–459. [Google Scholar]
- Yuan, R.; Wang, G.; Liu, F.; Zhang, W.; Wang, W.; Cao, S. Evaluation of shallow geothermal energy resources in the Beijing-Tianjin-Hebei Plain based on land use. J. Groundw. Sci. Eng. 2021, 9, 129–139. [Google Scholar]
- Zhu, H. Research on the Sedimentary Geothermal Resources in North Songliao Basin. Ph.D. Thesis, Northeast Petroleum University, Daqing, China, 2011. [Google Scholar]
- Zhang, W.; Wang, G.; Liu, F.; Xing, L.; Li, M. Characteristics of geothermal resources in sedimentary basins. Geol. China 2019, 46, 255–268. [Google Scholar]
- Duan, Z.; Pang, Z.; Wang, X. Sustainable evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics 2011, 40, 125–135. [Google Scholar] [CrossRef]
- Hähnlein, S.; Bayer, P.; Ferguson, G.; Blum, P. Sustainability and policy for the thermal use of shallow geothermal energy. Energy Pol. 2013, 59, 914–925. [Google Scholar] [CrossRef]
- Belhai, M.; Fujimitsu, Y.; Barragan-Reyes, R.M. Insights into geochemical characteristics of the geothermal fluids of northwestern algeria: An updated conceptual model. Geothermics 2022, 99, 102304. [Google Scholar] [CrossRef]
- Saibi, H.; Batir, J.F.; Pocasangre, C. Hydrochemistry and geothermometry of thermal waters from UAE and their energetic potential assessment—ScienceDirect. Geothermics 2021, 92, 102061. [Google Scholar] [CrossRef]
- Xu, C.; Yu, D.; Luo, Z. Recharge Sources and Genetic Model of Geothermal Water in Tangquan, Nanjing, China. Sustainability 2021, 13, 4449. [Google Scholar] [CrossRef]
- Ndikubwimana, I.; Mao, X.; Zhu, D.; He, Y.; Shi, Z. Geothermal evolution of deep parent fluid in Western Guangdong, China: Evidence from water chemistry, stable isotopes and geothermometry. Hydrogeol. J. 2020, 28, 2947–2961. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Liu, W. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China. Environ. Earth Sci. 2010, 59, 1589–1597. [Google Scholar] [CrossRef]
- Xu, W.; Su, X.; Dai, Z.; Yang, F.; Zhu, P.; Huang, Y. Multi-tracer investigation of river and groundwater interactions: A case study in Nalenggele River basin, northwest China. Hydrogeol. J. 2017, 25, 2015–2029. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z.; Liu, J.; Ma, J.; Gates, J. Groundwater recharge mechanism in an integrated tableland I Loess Plateau, northern China: Insights from environmental tracers. Hydrogeol. J. 2017, 25, 2049–2065. [Google Scholar] [CrossRef]
- Lu, L.; Pang, Z.; Kong, Y.; Guo, Q.; Wang, Y.; Xu, C.; Gu, W.; Zhou, L.; Yu, D. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: Implications for sustainable development. Hydrogeol. J. 2018, 26, 1705–1719. [Google Scholar] [CrossRef]
- Stefánsson, A.; Arnórsson, S.; Sveinbjörnsdóttir, Á.E.; Heinemaier, J.; Kristmannsdóttir, H. Isotope (δd, δ18o, 3h, δ13c, 14c) and chemical (B, Cl) Constrains on water origin, mixing, water-rock interaction and age of low-temperature geothermal water. Appl. Geochem. 2019, 108, 104380. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Fournier, R.O. A revised equation for Na/K geothermom. Geoth. Res. Counc. Trans. 1979, 3, 221–224. [Google Scholar]
- Fournier, R.O.; Truesdell, A.H. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 1973, 37, 1255–1275. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria-derivation of Na-K Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Reed, M.; Spycher, N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 1984, 48, 1479–1492. [Google Scholar] [CrossRef]
- Pang, Z.; Reed, M. Theoretical chemical thermometry on geothermal waters: Problems and methods. Geochim. Cosmochim. Acta 1988, 62, 1083–1091. [Google Scholar] [CrossRef]
- Ma, F.; Wang, G.; Sun, Z.; Zhang, W.; Hou, H.; Guo, X. An Analysis of Thermal Conductivity in Songliao Basin Based on Logging Parameters. Acta Geosci. Sin. 2019, 40, 350–360. [Google Scholar]
- Ge, R.; Zhang, Q.; Wang, L.; Xie, G.; Xu, S.; Chen, J.; Wang, X. Tectonic Evolution of Songliao Basin and the Prominent Tectonic Regime Transition in Eastern China. Geol. Rev. 2010, 56, 180–195. [Google Scholar]
- Dong, T.; Gao, Y.; Huang, H.; Tian, X.; Yang, Q.; Li, Y.; Niu, L.; Cao, Y. Mineralogical Evolution of the Cretaceous Strata in the Songliao Basin, Northeastern China: Implications for Thermal History and Paleoenvironmental Evolution. Minerals 2021, 11, 1101. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, Y.; Shi, Y.; Zhang, C.; Tang, X.; Hu, S. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China. Energies 2016, 9, 731. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, L.; Li, Z.; Yu, Z.; Jin, X.; Xu, T. Feasibility Evaluation of EGS Project in the Xujiaweizi Area: Potential Site in Songliao Basin, Northeastern China. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Su, Y. Genesis and Rational Development of Typical Geothermal Field in the Songliao Basin: A Case Study of Lindian Geothermal Field. Ph.D. Thesis, Jilin University, Changchun, China, 2021. [Google Scholar]
- Wang, C.; Feng, Z.; Zhang, L.; Huang, Y.; Cao, K.; Wang, P.; Zhao, B. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 17–30. [Google Scholar] [CrossRef]
- Fuoco, I.; Rose, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef]
- Li, J.; Sagoe, G.; Yang, G.; Lu, G. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields. J. Volcanol. Geotherm. Res. 2018, 352, 92–105. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Lu, C.; Gan, H.; Liu, Z. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet. Geofluids 2018, 71, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Gan, H.; Wang, G.; Wang, X.; Lin, W.; Yue, G. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids 2019, 2019, 3925462. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zuo, R.; Caers, J. Discovering geochemical patterns by factor-based cluster analysis. J. Geochem. Explor. 2017, 181, 106–115. [Google Scholar] [CrossRef]
- Apollaro, C.; Vespasiano, G.; De Rosa, R.; Marini, L. Use of mean residence time and flowrate of thermal waters to evaluate the volume of reservoir water contributing to the natural discharge and the related geothermal reservoir volume. Application to Northern Thailand hot springs. Geothermics 2015, 58, 62–74. [Google Scholar] [CrossRef]
- Craig, H. The isotopic geochemistry of water and carbon in geothermal area. In Nuclear Geology in Geothermal Areas; Tongiori, E., Ed.; Consiglio Nazional delle Riecerche, Laboratorio di GeologiaNucleare, Pias: Spoleto, Italy, 1963; pp. 17–53. [Google Scholar]
- Chen, Z.; Qi, J.; Zhang, Z. Application of Isotope Hydrogeological Methods to Typical Northern Basins; Science Press: Beijing, China, 2010. [Google Scholar]
- Han, L.; Plummer, L. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Sci. Rev. 2015, 152, 119–142. [Google Scholar] [CrossRef]
- Scholler, H. Qualitative evaluation of groundwater resource. Methods and techniques of groundwater investigation and development. Water Res. 1967, 33, 44–52. [Google Scholar]
- Luo, L.; Pang, Z.; Liu, J.; Hu, S.; Rao, S.; Li, Y.; Lu, L. Determining the recharge sources and circulation depth of thermal waters in Xianyang geothermal field in Guanzhong Basin: The controlling role of Weibei Fault. Geothermics 2017, 69, 55–64. [Google Scholar] [CrossRef]
- Roberto, C.; Marini, L. A Thermodynamic Approach to Water Geothermometry; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Brahim, B.; Makni, J.; Bouri, S.; Dhia, H.B. Evaluation of temperature and mixing process of water in deep and shallow aquifers in the southwestern Tunisia: Case of Djerid region. Arab. J. Sci. Eng. 2014, 39, 5677–5689. [Google Scholar] [CrossRef]
- Pasvanoğlu, S.; Çelik, M. A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kızılcahamam geothermal area, Galatian volcanic province. Geothermics 2017, 71, 88–107. [Google Scholar] [CrossRef]
- Wang, X. Formation conditions and Hydrogeochemical Characteristics of the geothermal water in Typical Coastal Geothermal field with Deep faults, Guangdong Province. Ph.D. Thesis, China University of Geosciences Wuhan, Wuhan, China, 2018. [Google Scholar]
- Li, G.; Li, F. The Circulation Law, Sustainable Development and Utilization of Geothermal Water in Guanzhong Basin; Science Press: Beijing, China, 2010. [Google Scholar]
- Jiang, G.; Gao, P.; Rao, S.; Zhang, L. Compilation of heat flow data in the continental area of China (4th edition). Chin. J. Geophys. 2016, 59, 2892–2910. [Google Scholar]
- Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci. Lett. 1992, 113, 495–510. [Google Scholar] [CrossRef]
- Pang, Z.; Yang, F.; Huang, T.; Duan, Z. Genesis analysis of geothermal system in Guanzhong Basin of China with implications on sustainable geothermal resources development. In Proceedings of the World Geothermal Congress 2010, Bali, Indonesia, 25–29 April 2010. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC: Boca Raton, FL, USA, 1997; p. 328. [Google Scholar]
- Ma, F.; Wang, G.; Sun, H.; Sun, Z. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China. J. Groundw. Sci. Eng. 2022, 10, 70–86. [Google Scholar]
- Vespasiano, G.; Marini, L.; Muto, F.; Auqué, L.F.; Cipriani, M.; De Rosa, R.; Critelli, S.; Gimeno, M.J.; Blasco, M.; Dotsika, E.; et al. Chemical, isotopic and geotectonic relations of the warm and cold waters of the Cotronei (Ponte Coniglio), Bruciarello and Repole thermal areas, (Calabria—Southern Italy). Geothermics 2021, 98, 102228. [Google Scholar] [CrossRef]
Sample | Well Depth (m) | T (°C) | pH | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | SiO2 | TDS | δ2H (‰) | δ18O (‰) | Water Type | Recharge Elevation (m) | CBE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1360 | 32 | 8.17 | 3.66 | 943.32 | 10.18 | 2.72 | 1053.17 | 0.61 | 867.95 | 17.09 | 2437.02 | −104 | −13.5 | Cl·HCO3−Na | 685.45 | −2.41 |
A2 | 1652 | 34 | 8.13 | 5.36 | 1223 | 5.95 | 0.87 | 1444 | 1.86 | 873.2 | 23.68 | 3164 | −104.26 | −13.81 | Cl·HCO3−Na | 690.71 | −1.24 |
A3 | 1145 | 24.4 | 8.17 | 3.93 | 1024 | 5.14 | 2.13 | 861.3 | 1.39 | 1342 | 17.19 | 2613 | −104.06 | −13.63 | Cl·HCO3−Na | 686.67 | −1.35 |
A4 | 1428 | 34 | 7.83 | 4.12 | 867.1 | 4.92 | 1.28 | 742.3 | 1.39 | 1083 | 18.62 | 2206 | −101.81 | −13.46 | Cl·HCO3−Na | 641.21 | −0.70 |
A5 | 1463 | 35.6 | 8.05 | 4.46 | 1127 | 3.08 | 0.62 | 899.8 | 1.4 | 1507 | 20.84 | 2841 | −102.14 | −13.29 | Cl·HCO3−Na | 647.88 | −0.77 |
A6 | 1450 | 32.7 | 7.66 | 3.96 | 1046 | 4.81 | 1.7 | 885.8 | 1.4 | 1373 | 17.95 | 2673 | −101.97 | −13.26 | Cl·HCO3−Na | 644.44 | −1.63 |
A7 | 1800 | 25 | 8.15 | 4.44 | 1362 | 23.99 | 6.01 | 2101 | 0 | 277.6 | 11.97 | 3671 | −104.10 | −14.56 | Cl−Na | 687.47 | −2.17 |
A8 | 1501 | - | 6.71 | 3.47 | 904.1 | 9.14 | 2.09 | 1120 | 1.5 | 650.4 | 15.38 | 2401 | −104.25 | −13.61 | Cl·HCO3−Na | 690.51 | −2.69 |
A9 | 629 | 20.1 | 8.19 | 2.64 | 857.3 | 3.56 | 1.66 | 745.8 | 1.39 | 1019 | 13.18 | 2163 | −87.47 | −12.14 | Cl·HCO3−Na | 351.52 | −0.11 |
B1 | 1850 | 47 | 8.13 | 6.67 | 1150 | 7.64 | 0.81 | 1343.68 | 0 | 925.92 | 16.82 | 3458.14 | −104 | −13.7 | HCO3·Cl−Na | 685.45 | −2.32 |
B2 | 2002 | 53.5 | 8.04 | 4.04 | 739 | 4.89 | 2.37 | 268.17 | 2.5 | 1291.42 | 24.90 | 1892.95 | −100 | −13.4 | HCO3·Cl−Na | 685.45 | 4.40 |
B3 | 2000 | 53 | 7.45 | 4.87 | 784 | 6.01 | 1.82 | 406.04 | 0 | 1421.7 | 20.00 | 5956.21 | −100 | −13.4 | HCO3·Cl−Na | 604.65 | −0.12 |
B4 | 2000 | 51 | 7.90 | 5.98 | 792.25 | 5.01 | 1.22 | 392.96 | 0 | 1446.1 | 20.00 | 5956.21 | −99 | −13.2 | HCO3·Cl−Na | 604.65 | 0.25 |
B5 | 2000 | 52 | 8.00 | 5.24 | 804.75 | 6.01 | 1.22 | 401.68 | 0 | 1415.59 | 20.00 | 5035.29 | −99 | −13.2 | HCO3·Cl−Na | 584.44 | 1.43 |
B6 | 2000 | 52 | 8.15 | 4.87 | 784 | 6.01 | 1.82 | 406.04 | 0 | 1421.7 | 20.00 | 5035.29 | −104 | −13.7 | HCO3·Cl−Na | 584.44 | −0.12 |
B7 | 2000 | 52 | 7.70 | 4.46 | 788.5 | 4.01 | 1.22 | 397.32 | 0 | 1443.05 | 19.00 | 5035.29 | −99 | −13.2 | HCO3·Cl−Na | 685.45 | −0.22 |
B8 | 3000 | 40.5 | 8.20 | 3.2 | 704 | 4.05 | 2.47 | 461.17 | 9.7 | 1036.12 | 24.00 | 1872 | −100 | −13.3 | HCO3·Cl−Na | 584.44 | 1.26 |
B9 | 1972 | 40.5 | 7.83 | 3.33 | 675.17 | 2.11 | 1.06 | 494.21 | 0 | 946.82 | 18.61 | 2185 | −102 | −13.8 | HCO3·Cl−Na | 604.65 | 0.01 |
B10 | 1802 | 41 | 8.24 | 3.1 | 745 | 3.91 | 0.6 | 269.9 | 0 | 1452.2 | 23.18 | 1835.14 | −100 | −13.3 | HCO3·Cl−Na | 645.05 | 0.55 |
B11 | 2000 | 46 | 8.24 | 3.35 | 758 | 14.03 | 0 | 324 | 10.8 | 1337.37 | 24.97 | 2568.59 | −100 | −13.5 | HCO3·Cl−Na | 604.65 | 1.77 |
B12 | 2718 | 50 | 8.02 | 4 | 760 | 4.01 | 1.22 | 394.06 | 4.76 | 1355.55 | 27.36 | 1884 | −101 | −13.4 | HCO3·Cl−Na | 604.65 | −0.55 |
B13 | 2050 | 53.4 | 8.00 | 2 | 720 | 1.99 | 3.62 | 350.57 | 2.38 | 1244.81 | 20.00 | 1767 | −101 | −13.6 | HCO3·Cl−Na | 624.85 | 1.48 |
B14 | 2000 | 54 | 8.36 | 3.1 | 757.5 | 2.93 | 0.6 | 275.08 | 0 | 1394.12 | 23.99 | 2018.53 | −100 | −13.3 | HCO3−Na+ | 624.85 | 2.26 |
B15 | 2006 | 56 | 8.32 | 5.87 | 735.86 | 4.01 | 0.12 | 453.76 | 12.97 | 994.63 | 29.23 | 2240 | - | - | HCO3·Cl−Na | 604.65 | 2.69 |
C1 | 1900 | 59 | 7.90 | 15.25 | 2063 | 15.03 | 2.43 | 2388.65 | 7 | 1502.37 | 29.58 | 6100.26 | - | - | Cl·HCO3−Na | - | −0.97 |
C2 | 1900 | 50 | 8.19 | 10.49 | 1973.68 | 14.57 | 1.03 | 2174.46 | 16.82 | 1560.77 | 27.36 | 5485.5 | −104 | −12.3 | Cl·HCO3−Na | 685.45 | −0.17 |
C3 | 1900 | 62.5 | 8.01 | 14.28 | 1945 | 11.53 | 3.65 | 2149.8 | 17.5 | 1196.97 | 24.46 | 5789.19 | - | - | Cl·HCO3−Na | - | 2.16 |
C4 | 2298 | 47 | 7.91 | 14.5 | 1860 | 26.41 | 4.16 | 2607.32 | 5.3 | 818.48 | 27.41 | 5400 | - | - | Cl−Na | - | −2.63 |
C5 | 2300 | 49 | 7.46 | 24 | 3360 | 58.82 | 12.31 | 5481.61 | 9.7 | 469.86 | 25.20 | 9413 | - | - | Cl−Na | - | −3.72 |
C6 | 2302 | 53 | 8.19 | 19.95 | 2570 | 25.05 | 2.43 | 3774.22 | 3.5 | 749.04 | 32.20 | 7267.77 | −101 | −12.7 | Cl−Na | 624.85 | −2.26 |
C7 | 2300 | 58 | 7.84 | 26.7 | 2460 | 39.12 | 2.37 | 3619.4 | 4.5 | 762.65 | 30.79 | 6990.02 | −100 | −12.6 | Cl−Na | 604.65 | −2.34 |
C8 | 2001 | 59 | 6.71 | 21.05 | 3692.5 | 58.12 | 10.33 | 5190.32 | 1.5 | 531.76 | 29.18 | 9330.9 | −103 | −12.6 | Cl−Na | 665.25 | 2.98 |
C9 | 2300 | 58 | 7.86 | 17.95 | 2437 | 34.07 | 3.65 | 3416.96 | 12 | 766.74 | 29.89 | 6768.99 | −100 | −12.4 | Cl−Na | 604.65 | −0.56 |
C10 | 2305 | 58 | 7.74 | 13.35 | 2390 | 28.06 | 3.65 | 3348.64 | 87.5 | 7.93 | 30.11 | 6669.91 | −101 | −12.7 | Cl−Na | 624.85 | 4.79 |
C11 | 2505 | 55 | 7.91 | 14.5 | 1860 | 26.41 | 4.16 | 2607.32 | 5.3 | 818.48 | 27.41 | 8271.12 | - | - | Cl−Na | - | −2.63 |
D1 | 100 | - | 7.19 | 1.73 | 37.85 | 34.3 | 10.67 | 3.85 | 8.43 | 238 | 34.03 | 255 | −81 | −10.7 | HCO3−Na·Ca | 220.81 | 1.28 |
D2 | 100 | - | 7.34 | 1.38 | 31.33 | 27.61 | 9.8 | 1.75 | 5.74 | 207.5 | 30.02 | 216 | −90 | −11.7 | HCO3−Na·Ca | 402.63 | 0.34 |
D3 | 100 | - | 7.43 | 1.53 | 34.62 | 29.38 | 10.1 | 5.25 | 10.39 | 213.6 | 31.50 | 250.1 | −90 | −11.8 | HCO3−Na·Ca | 402.63 | −0.14 |
D4 | 100 | - | 7.28 | 1.63 | 41.92 | 29.69 | 9.55 | 2.45 | 5.7 | 238 | 32.83 | 247.4 | −81 | −10.6 | HCO3−Na·Ca | 220.81 | 0.67 |
D5 | 105 | - | 7.11 | 1.64 | 35.16 | 34 | 11.13 | 4.9 | 8.33 | 238 | 32.28 | 250.7 | −81 | −10.8 | HCO3−Na·Ca | 220.81 | −0.18 |
D6 | 115 | - | 7.32 | 1.39 | 36.03 | 39.57 | 12.17 | 2.45 | 5.28 | 267.9 | 32.55 | 266 | −83 | −10.9 | HCO3−Na·Ca | 261.21 | 0.26 |
D7 | 150 | - | 7.35 | 0.61 | 20.23 | 12.66 | 3.93 | 2.1 | 6.31 | 104.3 | 26.71 | 128.4 | −94 | −12.5 | HCO3−Na·Ca | 483.43 | −1.19 |
D8 | 120 | - | 7.33 | 0.46 | 8.53 | 19.52 | 6.92 | 1.4 | 5.91 | 109.8 | 22.51 | 123.2 | −95 | −12.6 | HCO3−Mg·Ca | 503.64 | −0.70 |
D9 | 180 | - | 7.26 | 0.68 | 29 | 11.03 | 3.39 | 5.6 | 2.57 | 116.5 | 24.94 | 141.5 | −95 | −12.7 | HCO3−Na·Ca | 503.64 | −0.21 |
D10 | 120 | - | 7.35 | 0.97 | 18.43 | 13.59 | 4.41 | 1.75 | 2.75 | 103.7 | 21.38 | 121.4 | −94 | −12.5 | HCO3−Na·Ca | 483.43 | 1.81 |
D11 | 100 | - | 7.68 | 1.64 | 35.93 | 46.48 | 14.37 | 2.1 | 10.35 | 292.9 | 25.64 | 285.6 | −82 | −10.6 | HCO3−Na·Ca | 241.01 | 0.48 |
D12 | 140 | - | 7.75 | 1.76 | 39.8 | 31.61 | 10.27 | 2.1 | 8.21 | 244.7 | 32.21 | 250.6 | −82 | −10.9 | HCO3−Na·Ca | 241.01 | −0.35 |
D13 | - | - | 7.07 | 1.74 | 10.59 | 21.71 | 5.69 | 7.84 | 9.41 | 97.63 | 9.34 | 118.5 | - | - | HCO3−Mg·Ca | - | 1.16 |
Geothermometer | Empirical Formula |
---|---|
Quartz (conduction cooling) [19] | T1 = [1309/(5.19 − lg (SiO2)) − 273 |
Quartz (maximum steam loss) [19] | T2 = [1522/(5.75 − lg SiO2)] − 273 |
Chalcedony [19] | T3 = [1032/(4.69 − lg SiO2)] − 273 |
Na-K-Ca [21] | TNa-K-Ca = 1647/{lg (CNa/CK) + β[lg (CCa1/2/CNa) + 2.06] + 2.47} − 273 |
Na-K [20] | TNa-K = 1217/[(lg (CNa/CK) + 1.483) − 273 |
K-Mg [22] | TK-Mg = 4410/[14 − (lg (CK2/CMg)) − 273 |
Sample No. | 14C (PMC, %) | Dated Age (Year) | 13C (PDB, ‰) |
---|---|---|---|
A8 | 0.5 | 43,800 | −7.20 |
A3 | 0.62 | 42,022 | −6.60 |
A5 | <0.44 | >44,800 | −9.60 |
A9 | <0.44 | >44,800 | −5.70 |
A4 | 0.76 | 40,339 | −10.30 |
A7 | <0.44 | >44,800 | −2.70 |
A2 | <0.44 | >44,800 | −10.90 |
A6 | <0.44 | >44,800 | −7.90 |
Sample No. | T Measured | T3 | T1 | TNa-K-Ca | TNa-K | TK-Mg | Difference (%) (T1 – Tm)/Tm × 100% |
---|---|---|---|---|---|---|---|
A2 | 53 | 38.10 | 69.91 | 141.22 | 43.67 | 81.60 | 31.9 |
A3 | 50 | 25.58 | 57.85 | 129.26 | 38.99 | 63.76 | 15.7 |
A6 | 52.3 | 27.20 | 59.42 | 131.79 | 38.51 | 66.47 | 13.6 |
A8 | 58.87 | 21.46 | 53.86 | 107.08 | 38.99 | 61.21 | −8.5 |
B2 | 84 | 38.10 | 69.91 | 127.23 | 51.79 | 63.18 | −16.8 |
B6 | 65 | 27.20 | 59.42 | 130.17 | 56.68 | 70.44 | −8.6 |
B7 | 68 | 12.57 | 45.19 | 138.21 | 53.08 | 73.07 | −33.5 |
B12 | 82 | 31.37 | 63.44 | 93.14 | 43.97 | - | −22.6 |
C1 | 66.8 | 38.65 | 70.44 | 170.40 | 63.57 | 95.30 | 5.4 |
C3 | 59.3 | 28.58 | 60.75 | 175.19 | 63.30 | 88.24 | 2.4 |
C4 | 84 | 37.24 | 69.09 | 147.72 | 65.74 | 86.96 | −17.7 |
C6 | 82 | 44.11 | 75.65 | 170.47 | 65.57 | 102.63 | −7.7 |
C7 | 84 | 31.37 | 63.44 | 169.42 | 79.87 | 111.27 | −24.5 |
C8 | 85 | 38.64 | 70.43 | 151.28 | 53.38 | 84.87 | −17.1 |
C9 | 78 | 46.93 | 78.34 | 154.06 | 63.43 | 94.22 | 0.4 |
C10 | 81 | 47.44 | 78.82 | 145.89 | 52.61 | 86.52 | −2.7 |
C11 | 89 | 44.11 | 75.65 | 147.72 | 65.74 | 86.96 | −15.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Zhang, W.; Gan, H.; Liu, F.; Wei, S.; Liu, L. Hydrochemical Characteristics and the Genetic Mechanism of Low–Medium Temperature Geothermal Water in the Northwestern Songliao Basin. Water 2022, 14, 2235. https://doi.org/10.3390/w14142235
Yuan R, Zhang W, Gan H, Liu F, Wei S, Liu L. Hydrochemical Characteristics and the Genetic Mechanism of Low–Medium Temperature Geothermal Water in the Northwestern Songliao Basin. Water. 2022; 14(14):2235. https://doi.org/10.3390/w14142235
Chicago/Turabian StyleYuan, Ruoxi, Wei Zhang, Haonan Gan, Feng Liu, Shuaichao Wei, and Lingxia Liu. 2022. "Hydrochemical Characteristics and the Genetic Mechanism of Low–Medium Temperature Geothermal Water in the Northwestern Songliao Basin" Water 14, no. 14: 2235. https://doi.org/10.3390/w14142235