Evaluation of Well Improvement and Water Quality Change before and after Air Surging in Bedrock Aquifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air Surging
2.3. Step Drawdown Test and Interpretation
2.4. Analysis of Groundwater Quality
2.5. Analysis of Clogging Substances
3. Results and Discussion
3.1. Analysis of the Effects of Surging on Well Improvement
3.2. Groundwater Quality Changes before and after Air Surging
3.3. Analysis of Substances Blocking the Well Screen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najafzadeh, M.; Homaei, F.; Mohamadi, S. Reliability evaluation of groundwater quality index using data-driven models. Environ. Sci. Res. 2021, 29, 8174–8190. [Google Scholar] [CrossRef] [PubMed]
- Kahuda, D.; Pech, P.; Ficaj, V.; Pechova, H. Well rehabilitation via the ultrasonic method and evaluation of its effectiveness from the pumping test. Coatings 2021, 11, 1250. [Google Scholar] [CrossRef]
- Mason, T.J.; Collings, A.; Sumel, A. Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason. Sonochemistry 2004, 11, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Izadifar, Z.; Babyn, P.; Chapman, D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound Med. Biol. 2017, 43, 1085–1104. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, C.G.E.M.; Breedveld, R.J.M.; Juhász-Holterman, M.; Oosterhof, A.; Stuyfzand, P.J. Cause and prevention of well bore clogging by particles. Hydrogeol. J. 2009, 17, 1877–1886. [Google Scholar] [CrossRef]
- Houben, G.; Treskatis, C. Water Well Rehabilitation and Reconstruction, 3rd ed.; McGraw Hill Professional: Two Penn Plaza, NY, USA, 2007; ISBN 0-07-148651-8. [Google Scholar]
- Timmer, H.; Verdel, J.; Jongmans, A.G. Well clogging by particles in Dutch well fields. J. Am. Water Work. Assoc. 2003, 95, 112–118. [Google Scholar] [CrossRef]
- Houben, G.J. Iron oxide incrustations in Wells—Part 1: Genesis, mineralogy and geochemistry. Appl. Geochem. 2003, 18, 927–939. [Google Scholar] [CrossRef]
- Ralph, D.E.; Stevenson, J.M. The role of bacteria in well clogging. Water Res. 1995, 29, 365–369. [Google Scholar] [CrossRef]
- Houben, G.J. Review: Hydraulics of water wells-head losses of individual components. Hydrogeol. J. 2015, 23, 1659–1675. [Google Scholar] [CrossRef]
- Kahuda, D.; Pech, P. A new method for the evaluation of well rehabilitation from the early portion of a pumping test. Water 2020, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, F.G. Groundwater and Wells, 2nd ed.; Johnson Division: St. Paul, MN, USA, 1986. [Google Scholar]
- Ha, K.; Lee, E.; An, H.; Kim, S.; Park, C.; Kim, G.-B.; Ko, K.-S. Evaluation of seasonal groundwater quality changes associated with groundwater pumping and level fluctuations in an agricultural area, Korea. Water 2021, 13, 51. [Google Scholar] [CrossRef]
- Ha, K.; Park, C.; Kim, S.; Shin, E.; Lee, E. Groundwater recharge evaluation on Yangok-ri area of Hongseong using a distributed hydrologic model (VELAS). Econ. Environ. Geol. 2021, 54, 161–176. [Google Scholar] [CrossRef]
- KIGAM (Korea Institute of Geoscience and Mineral Resources); KRC (Korea Rural Community Corporation); GeoGreen21. Annual Performance and Plan for Well Network System Technology Development against Drought: Environmental Technology Development Project; KIGAM: Daejeon, Korea, 2021. [Google Scholar]
- Batu, V. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Kruseman, G.P.; de Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; IILRI: Wageningen, The Netherlands, 2008; pp. 1–372. [Google Scholar]
- Birsoy, Y.K.; Summers, W.K. Determination of aquifer parameters from step tests and intermittent pumping data. Ground Water 1980, 18, 137–146. [Google Scholar] [CrossRef]
- Avci, C.B.; Ciftci, E.; Sahin, A.U. Identification of aquifer and well parameters from step-drawdown tests. Hydrogeol. J. 2010, 18, 1591–1601. [Google Scholar] [CrossRef]
- Clark, L. The analysis and planning of step drawdown tests. Q. J. Eng. Geol. Hydrogeol. 1977, 10, 125–143. [Google Scholar] [CrossRef]
- Gupta, A.D. On analysis of step-drawdown data. Groundwater 1989, 27, 874–881. [Google Scholar] [CrossRef]
- Jacob, C.E. Drawdown Test to Determine Effective Radius of Artesian Well. Trans. Am. Soc. Civ. Eng. 1947, 112, 1047–1070. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumar, A.; Nanda, G.; Bhatt, G. Evaluation of traditional and nontraditional optimization techniques for determining well parameters from step-drawdown test data. J. Hydraul. Eng. 2006, 11, 617–630. [Google Scholar] [CrossRef]
- Kawecki, M.W. Meaningful Estimates of Step-Drawdown Tests. Groundwater 1995, 33, 23–32. [Google Scholar] [CrossRef]
- Kurtulus, B.; Yaylım, T.N.; Avşar, O.; Kulac, H.F.; Razack, M. The well efficiency criteria revisited: Development of a general well efficiency criteria (GWEC) based on Rorabaugh’s model. Water 2019, 11, 1784. [Google Scholar] [CrossRef] [Green Version]
- Labadie, J.W.; Helweg, O.J. Step-drawdown Test Analysis by Computer. Groundwater 1975, 13, 438–444. [Google Scholar] [CrossRef]
- Rorabaugh, M.I. Graphical and Theoretical Analysis of Step-Drawdown Test of Artesian Wells. Proc. Am. Soc. Civ. Eng. 1953, 19, 1–23. [Google Scholar]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Coble, P.G. Marine optical biogeochemistry: The chemistry of ocean color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.M.; Fleck, J.; Kraus, T.E.; Downing, B.D.; von Dessonneck, T.; Bergamaschi, B. Procedures for using the Horiba Scientific Aqualog® fluorometer to measure absorbance and fluorescence from dissolved organic matter. USGS Open-File Rep. 2018, 1096, 31. [Google Scholar]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.W.; Baker, A.; Andersen, M.S. Dissolved organic carbon mobilisation in a groundwater system stressed by pumping. Sci. Rep. 2016, 5, 18487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Ocean. 2001, 46, 38–48. [Google Scholar] [CrossRef]
Well | D-8 | D-7 |
---|---|---|
Development (year) | 2012 | 2012 |
Well depth (m) | 103 | 175 |
Well diameter (mm) | 350 | 200 |
Admitted pumpage (m3/day) | 220 | 90 |
Usage | Agricultural use | Agricultural use |
Test date | 3–17 Novemer 2020 | 7–22 October 2021 |
Step | Before Surging | After Surging | ||||||
---|---|---|---|---|---|---|---|---|
Q | s1 | Q/s1 | T | Q | s1 | Q/s1 | T | |
(m3/day) | (m) | (m3/day/m) | (m2/day) | (m3/day) | (m) | (m3/day/m) | (m2/day) | |
(a) D-8 well | ||||||||
1 | 73.2 | 3.75 | 19.54 | 27.43 | 70.0 | 3.37 | 20.78 | 28.95 |
2 | 97 | 4.95 | 19.61 | 31.02 | 92.4 | 4.49 | 20.57 | 32.31 |
3 | 118.4 | 6.39 | 18.53 | 27.72 | 115.2 | 5.78 | 19.92 | 31.84 |
4 | 141.6 | 7.74 | 18.29 | 30.54 | 136.0 | 7.16 | 18.99 | 28.99 |
5 | 165.2 | 9.15 | 18.05 | 32.73 | 159.4 | 8.52 | 18.71 | 29.80 |
Average | 18.80 | 29.89 | Average | 19.79 | 30.38 | |||
(b) D-7 well | ||||||||
1 | 13.2 | 3.79 | 3.49 | 1.95 | 15.9 | 2.80 | 5.67 | 3.69 |
2 | 27.7 | 9.19 | 3.01 | 1.53 | 29.8 | 5.52 | 5.40 | 3.51 |
3 | 45.2 | 15.91 | 2.84 | 1.41 | 45.9 | 9.74 | 4.71 | 2.85 |
4 | 61.7 | 25.03 | 2.47 | 1.10 | 61.1 | 16.02 | 3.81 | 1.87 |
5 | 81.9 | 55.97 | 1.46 | 0.50 | 79.4 | 28.25 | 2.81 | 1.10 |
Average | 2.65 | 1.30 | Average | 4.48 | 2.61 |
(a) D-8 Well | |||||||||
Before surging | |||||||||
Step | Q (m3/day) | sw (m) | Jacob’s method (B = 3.40 × 10−2, C = 9.72 × 10−5) | Labadie–Helweg’s method (B = 2.10 × 10−2, C = 1.93 × 10−3, P = 1.54) | |||||
BQ | CQ2 | W.E. (%) | BQ | CQP | W.E. (%) | ||||
1 | 73.2 | 3.05 | 2.55 | 0.52 | 83.1 | 1.54 | 1.44 | 51.7 | |
2 | 97 | 4.28 | 3.38 | 0.91 | 78.7 | 2.04 | 2.21 | 47.9 | |
3 | 118 | 5.59 | 4.13 | 1.36 | 75.2 | 2.49 | 3.01 | 45.3 | |
4 | 142 | 6.92 | 4.94 | 1.95 | 71.7 | 2.98 | 3.96 | 42.9 | |
5 | 165 | 8.33 | 5.76 | 2.65 | 68.5 | 3.47 | 5.03 | 40.8 | |
After surging | |||||||||
Step | Q (m3/day) | sw (m) | Jacob’s method (B = 3.26 × 10−2, C = 9.93 × 10−5) | Labadie–Helweg’s method (B = 2.10 × 10−2, C = 1.84 × 10−3, P = 1.54) | |||||
BQ | CQ2 | W.E. (%) | BQ | CQP | W.E. (%) | ||||
1 | 70.0 | 2.75 | 2.29 | 0.49 | 82.4 | 1.40 | 1.28 | 52.3 | |
2 | 92.4 | 3.88 | 3.02 | 0.85 | 78.1 | 1.85 | 1.96 | 48.5 | |
3 | 115.2 | 5.09 | 3.76 | 1.32 | 74.0 | 2.30 | 2.75 | 45.6 | |
4 | 136.0 | 6.35 | 4.44 | 1.84 | 70.7 | 2.72 | 3.55 | 43.4 | |
5 | 159.4 | 7.65 | 5.20 | 2.52 | 67.3 | 3.19 | 4.54 | 41.3 | |
(b) D-7 Well | |||||||||
Before surging | |||||||||
Step | Q (m3/day) | sw (m) | Jacob’s method (B = 0.14, C = 1.50 × 10−3) | Labadie–Helweg’s method (B = 0.12, C = 6.50 × 10−3, P = 1.67) | |||||
BQ | CQ2 | W.E. (%) | BQ | CQP | W.E. (%) | ||||
1 | 13.2 | 2.05 | 1.80 | 0.26 | 87.2 | 1.65 | 0.48 | 77.4 | |
2 | 27.7 | 5.02 | 3.78 | 1.16 | 76.5 | 3.46 | 1.66 | 67.6 | |
3 | 45.2 | 9.13 | 6.17 | 3.09 | 66.6 | 5.64 | 3.75 | 60.1 | |
4 | 61.7 | 14.23 | 8.42 | 5.75 | 59.4 | 7.70 | 6.31 | 55.0 | |
* 5 | 81.9 | 26.21 | 11.18 | 10.13 | 52.4 | 10.22 | 10.13 | 50.2 | |
After surging | |||||||||
Step | Q (m3/day) | sw (m) | Jacob’s method (B = 8.80 × 10−2, C = 1.16 × 10−3) | Labadie–Helweg’s method (B = 9.33 × 10−2, C = 2.38 × 10−3, P = 1.80) | |||||
BQ | CQ2 | W.E. (%) | BQ | CQP | W.E. (%) | ||||
1 | 15.9 | 1.71 | 1.40 | 0.29 | 82.7 | 1.48 | 0.34 | 81.3 | |
2 | 29.8 | 3.61 | 2.62 | 1.03 | 71.9 | 2.78 | 1.06 | 72.5 | |
3 | 45.9 | 6.44 | 4.04 | 2.44 | 62.4 | 4.28 | 2.29 | 65.1 | |
4 | 61.1 | 9.75 | 5.38 | 4.32 | 55.5 | 5.70 | 3.83 | 59.8 | |
* 5 | 79.4 | 15.39 | 6.99 | 7.29 | 48.9 | 7.41 | 6.14 | 54.7 |
Sample | TDS | Major Dissolved Ions | CBE | DOC | FDOM | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | Na | K | Fe | Mn | SiO2 | Sr | HCO3 | F | Cl | NO2 | NO3 | SO4 | Peak C | Peak A | Peak M | Peak T | HIX | BIX | FI | |||||
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | (%) | mg/L | QSU | QSU | QSU | QSU | |||||
(a) D-8 | |||||||||||||||||||||||||
Pumping Phase I | BP0 | 127.2 | 21.8 | 8.0 | 9.5 | 1.21 | <0.1 | <0.1 | 18.9 | 0.10 | 103.7 | 0.19 | 12.0 | 0.19 | 2.18 | 2.37 | 1.4 | 0.379 | 0.008 | 0.013 | 0.008 | 0.007 | 0.685 | 1.062 | 1.602 |
BP1 | 139.6 | 22.2 | 7.9 | 9.4 | 1.24 | <0.1 | <0.1 | 18.8 | 0.10 | 100.4 | 0.13 | 22.5 | 0.55 | 3.57 | 4.37 | −5.1 | 0.345 | 0.008 | 0.013 | 0.010 | 0.004 | 0.737 | 1.083 | 2.631 | |
BP2 | 129.9 | 26.6 | 8.2 | 9.7 | 1.22 | 0.12 | <0.1 | 18.5 | 0.13 | 113.6 | 0.07 | 7.3 | 0.10 | 1.22 | 1.05 | 7.4 | 0.333 | 0.009 | 0.011 | 0.010 | 0.007 | 0.741 | 0.992 | 1.675 | |
BP3 | 140.3 | 27.2 | 8.2 | 9.8 | 1.24 | 0.20 | <0.1 | 18.4 | 0.13 | 117.6 | 0.00 | 12.6 | 0.18 | 2.22 | 2.45 | 2.5 | 0.373 | 0.010 | 0.014 | 0.008 | 0.005 | 0.780 | 0.942 | 2.256 | |
BP4 | 142.9 | 27.7 | 8.4 | 9.9 | 1.29 | 0.37 | 0.05 | 18.5 | 0.14 | 121.1 | 0.00 | 12.7 | 0.19 | 2.19 | 2.40 | 2.4 | 0.323 | 0.010 | 0.013 | 0.012 | 0.013 | 0.706 | 1.167 | 2.445 | |
BP5 | 143.8 | 27.7 | 8.5 | 10.0 | 1.26 | 0.49 | 0.06 | 19.0 | 0.14 | 119.1 | 0.00 | 13.4 | 0.19 | 2.28 | 2.51 | 3.0 | 0.345 | 0.010 | 0.012 | 0.009 | 0.006 | 0.766 | 0.778 | 1.614 | |
Surging Stage | SU1 | 131.8 | 22.2 | 8.1 | 10.7 | 1.30 | <0.1 | 0.05 | 16.5 | 0.10 | 86.4 | 0.13 | 22.5 | 0.55 | 3.57 | 4.37 | 1.4 | 0.501 | 0.022 | 0.033 | 0.032 | 0.073 | 0.655 | 1.329 | 1.773 |
SU2 | 115.7 | 18.5 | 6.8 | 10.3 | 1.37 | <0.1 | <0.1 | 14.0 | 0.08 | 69.2 | 0.13 | 24.5 | 0.54 | 1.17 | 4.71 | 0.6 | 0.842 | 0.058 | 0.084 | 0.060 | 0.080 | 0.809 | 0.935 | 1.691 | |
SU3 | 160.2 | 30.9 | 8.2 | 11.0 | 1.76 | <0.1 | <0.1 | 16.1 | 0.14 | 127.8 | 0.17 | 23.2 | 0.49 | 0.00 | 5.91 | −2.5 | 0.620 | 0.044 | 0.072 | 0.045 | 0.058 | 0.799 | 0.840 | 1.705 | |
SU4 | 167.3 | 30.8 | 8.3 | 10.9 | 1.70 | <0.1 | <0.1 | 16.8 | 0.15 | 133.6 | 0.14 | 23.8 | 0.30 | 2.15 | 6.78 | −5.3 | 0.422 | 0.031 | 0.051 | 0.041 | 0.083 | 0.727 | 1.066 | 1.770 | |
SU5 | 171.2 | 32.5 | 8.6 | 11.3 | 1.77 | <0.1 | 0.05 | 17.7 | 0.16 | 133.0 | 0.15 | 27.0 | 0.73 | 0.57 | 6.25 | −3.8 | 0.397 | 0.024 | 0.041 | 0.034 | 0.064 | 0.717 | 1.056 | 1.669 | |
SU6 | 166.2 | 31.6 | 8.4 | 11.2 | 1.62 | <0.1 | <0.1 | 17.3 | 0.15 | 129.1 | 0.14 | 24.3 | 0.61 | 1.55 | 6.50 | −3.1 | 0.408 | 0.031 | 0.048 | 0.024 | 0.010 | 0.876 | 0.746 | 1.596 | |
Pumping Phase II | AP0 | 129.3 | 21.6 | 7.6 | 10.1 | 1.22 | <0.1 | 0.05 | 17.9 | 0.10 | 80.3 | 0.15 | 24.9 | 0.80 | 0.77 | 5.56 | 0.5 | 0.406 | 0.010 | 0.018 | 0.010 | 0.008 | 0.750 | 0.792 | 1.642 |
AP1 | 145.0 | 24.9 | 8.1 | 10.3 | 1.40 | <0.1 | 0.05 | 18.4 | 0.12 | 104.3 | 0.15 | 22.3 | 0.69 | 3.79 | 4.38 | −2.2 | 0.387 | 0.012 | 0.015 | 0.011 | 0.006 | 0.732 | 0.809 | 1.809 | |
AP2 | 147.5 | 25.6 | 8.0 | 10.2 | 1.40 | 0.26 | 0.07 | 18.0 | 0.12 | 107.3 | 0.13 | 22.8 | 0.72 | 3.74 | 4.52 | −2.7 | 0.367 | 0.012 | 0.017 | 0.012 | 0.008 | 0.729 | 0.798 | 2.069 | |
AP3 | 147.7 | 26.5 | 8.3 | 10.9 | 1.44 | 0.37 | 0.08 | 18.5 | 0.13 | 100.3 | 0.13 | 23.6 | 0.74 | 3.86 | 4.63 | 1.1 | 0.367 | 0.011 | 0.018 | 0.014 | 0.009 | 0.689 | 0.897 | 1.877 | |
AP4 | 156.5 | 27.2 | 8.4 | 10.9 | 1.43 | 0.51 | 0.09 | 18.3 | 0.13 | 113.0 | 0.13 | 25.2 | 0.73 | 4.07 | 4.83 | −3.1 | 0.415 | 0.013 | 0.015 | 0.012 | 0.006 | 0.779 | 0.785 | 1.742 | |
AP5 | 157.6 | 27.3 | 8.5 | 11.1 | 1.42 | 0.68 | 0.10 | 18.3 | 0.13 | 114.1 | 0.13 | 25.1 | 0.68 | 4.06 | 4.76 | −2.7 | 0.395 | 0.012 | 0.016 | 0.012 | 0.007 | 0.775 | 0.900 | 1.954 | |
(b) D-7 | |||||||||||||||||||||||||
Surging Stage | SU1 | 134.1 | 22.3 | 7.5 | 11.3 | 1.58 | <0.1 | <0.1 | 14.8 | 1.20 | 105.1 | 0.22 | 9.3 | 0.83 | 6.0 | 9.1 | −0.3 | 0.741 | 0.017 | 0.021 | 0.015 | 0.018 | 0.653 | 0.774 | 1.461 |
SU2 | 135.5 | 23.8 | 7.2 | 11.3 | 1.01 | <0.1 | <0.1 | 15.3 | 1.01 | 103.1 | 0.19 | 9.9 | 0.83 | 8.3 | 7.6 | 0.7 | 0.551 | 0.014 | 0.017 | 0.011 | 0.022 | 0.586 | 0.942 | 1.698 | |
SU3 | 133.8 | 24.2 | 7.2 | 10.0 | 0.96 | <0.1 | <0.1 | 15.1 | 0.81 | 99.2 | 0.18 | 10.3 | 0.75 | 9.6 | 7.3 | 0.8 | 0.576 | 0.011 | 0.014 | 0.009 | 0.013 | 0.613 | 0.983 | 1.692 | |
SU4 | 134.1 | 24.7 | 7.3 | 9.5 | 0.95 | <0.1 | <0.1 | 15.1 | 0.75 | 97.8 | 0.17 | 10.6 | 0.78 | 10.6 | 7.0 | 0.9 | 0.456 | 0.008 | 0.010 | 0.008 | 0.010 | 0.551 | 0.866 | 1.794 | |
SU5 | 135.9 | 24.7 | 7.4 | 9.5 | 0.95 | <0.1 | <0.1 | 15.2 | 0.76 | 101.5 | 0.17 | 10.6 | 0.82 | 10.2 | 7.1 | 0.0 | 0.650 | 0.008 | 0.012 | 0.008 | 0.013 | 0.547 | 0.924 | 1.208 | |
Pumping Phase II | AP1 | 134.7 | 21.7 | 7.5 | 11.8 | 1.10 | <0.1 | <0.1 | 15.7 | 1.40 | 109.6 | 0.34 | 8.8 | 0.72 | 4.9 | 8.8 | −1.8 | 0.605 | 0.011 | 0.006 | 0.004 | 0.008 | 0.693 | 0.724 | 1.808 |
AP2 | 132.9 | 22.6 | 7.0 | 10.7 | 1.02 | <0.1 | <0.1 | 15.5 | 1.12 | 105.0 | 0.34 | 9.4 | 0.70 | 6.7 | 7.8 | −1.8 | 0.484 | 0.014 | 0.011 | 0.007 | 0.009 | 0.669 | 0.882 | 1.868 | |
AP3 | 132.2 | 23.9 | 6.8 | 10.4 | 1.00 | <0.1 | <0.1 | 15.8 | 0.75 | 96.9 | 0.19 | 10.4 | 0.69 | 9.6 | 6.4 | 1.1 | 0.514 | 0.012 | 0.007 | 0.007 | 0.011 | 0.607 | 0.721 | 1.536 | |
AP4 | 131.4 | 24.6 | 6.5 | 9.2 | 0.93 | <0.1 | <0.1 | 15.8 | 0.58 | 94.3 | 0.18 | 10.7 | 0.65 | 11.4 | 5.7 | 0.6 | 0.577 | 0.010 | 0.007 | 0.006 | 0.011 | 0.643 | 0.688 | 2.247 | |
AP5 | 132.5 | 25.2 | 6.4 | 8.8 | 0.89 | <0.1 | <0.1 | 15.8 | 0.52 | 94.1 | 0.17 | 10.9 | 0.66 | 12.4 | 5.7 | 0.2 | 0.522 | 0.008 | 0.005 | 0.006 | 0.009 | 0.650 | 0.696 | 1.598 |
Mineral | Chemical Formula | Surging Stage in the D-8 Well Early → Late | Surging Stage in the D-7 Well Early → Late | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D-8(1) | D-8(2) | D-8(3) | D-8(4) | D-8(5) | D-8(6) | D-7(1) | D-7(2) | D-7(3) | D-7(4) | D-7(5) | ||
Quartz | SiO2 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | |
lllite-2M1 | (K,H3O)AlSi3AlO10(OH)2 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | |
Kaolinite-1A | Al2Si2O5(OH)4 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ||
Muscovite | KAl2 (Si3Al)O10(OH)2 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | |
Montmorillonite-15A | CaO2(Al,Mg)2Si4O10(OH)214H2O | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ||||||
Chlorite | Mg2Al3 (Si3Al)O10(O) 8 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ||||||
Jacobsite, syn | MnFe2O4 | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | |||||
Lepidocrocite | FeO(OH) | ⯀ | ⯀ | ⯀ | ⯀ | ⯀ | ||||||
Albite, ordered | NaAlSi3O8 | ⯀ | ⯀ | ⯀ | ⯀ | |||||||
Albite, calcian | (Na,Ca)(Si,Al)4O8 | ⯀ | ⯀ | ⯀ | ||||||||
Hematite | Fe2O3 | ⯀ | ⯀ | |||||||||
Orthoclase | KAlSi3O8 | ⯀ |
(a) Major compositions | ||||||||||||
(Unit: wt.%) | ||||||||||||
Sample | Na | Mg | Al | K | Ca | Mn | Fe | Ti | Others | |||
D-8_U | 0.02 | 0.03 | 0.03 | 0.01 | 0.49 | 0.20 | 45.4 | ND | ||||
D-8_L | 0.01 | 0.03 | 0.02 | ND | 0.50 | 0.05 | 47.3 | ND | ||||
(b) Others | ||||||||||||
(Unit: mg/kg) | ||||||||||||
Sample | Cu | Zn | Sr | Cd | Li | Cr | Co | Ni | V | As | Mo | Pb |
D-8_U | 28 | 487 | 66 | 2.0 | ND | 62 | 19 | 27 | 198 | 542 | 5 | 7 |
D-8_L | 4 | 398 | 69 | 1.9 | ND | 64 | 4 | 27 | 237 | 687 | 4 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, K.; An, H.; Lee, E.; Lee, S.; Kim, H.C.; Ko, K.-S. Evaluation of Well Improvement and Water Quality Change before and after Air Surging in Bedrock Aquifers. Water 2022, 14, 2233. https://doi.org/10.3390/w14142233
Ha K, An H, Lee E, Lee S, Kim HC, Ko K-S. Evaluation of Well Improvement and Water Quality Change before and after Air Surging in Bedrock Aquifers. Water. 2022; 14(14):2233. https://doi.org/10.3390/w14142233
Chicago/Turabian StyleHa, Kyoochul, Hyowon An, Eunhee Lee, Sujeong Lee, Hyoung Chan Kim, and Kyung-Seok Ko. 2022. "Evaluation of Well Improvement and Water Quality Change before and after Air Surging in Bedrock Aquifers" Water 14, no. 14: 2233. https://doi.org/10.3390/w14142233
APA StyleHa, K., An, H., Lee, E., Lee, S., Kim, H. C., & Ko, K.-S. (2022). Evaluation of Well Improvement and Water Quality Change before and after Air Surging in Bedrock Aquifers. Water, 14(14), 2233. https://doi.org/10.3390/w14142233