Relationships between Fish Communities and Habitat before and after a Typhoon Season in Tropical Mountain Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Physical Habitat and Water Quality Survey
2.3. Fish Survey
2.4. Data Analyses
3. Results
3.1. Differences in Physical Habitat, Water Quality, Riparian Conditions, and Fish Measures between the Pre-Typhoon and Post-Typhoon Seasons
3.2. Associations among Environmental Factors and Fish Community Measures
3.3. Key Environmental Variables Associated with Fish Communities
3.4. Partitioning Variation of Fish Communities among Three Habitat Types
4. Discussion
4.1. Typhoon Influences on Fish and Habitat
4.2. Fish–Habitat Relationships between Pre-Typhoon and Post-Typhoon Seasons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, L.; Lyons, J.; Rasmussen, P.; Kanehl, P.; Seelbach, P.; Simon, T.; Wiley, M.; Baker, E.; Niemela, S.; Stewart, M. Influences of landscape-and reach-scale habitat on stream fish communities in the Northern Lakes and Forest ecoregion. Can. J. Fish. Aquat. Sci. 2003, 60, 491–505. [Google Scholar] [CrossRef]
- Sawyer, J.A.; Stewart, P.M.; Mullen, M.M.; Simon, T.P.; Bennett, H.H. Influence of habitat, water quality, land use on macroinvertebrate and fish assemblages of a southeastern coastal plain watershed, USA. Aquat. Ecosyst. Health 2004, 7, 85–99. [Google Scholar] [CrossRef]
- Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K. Land use, spatial scale, and stream systems: Lessons from an agricultural region. Environ. Manag. 2005, 36, 775–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A. A hierarchical spatial framework and database for the national river fish habitat condition assessment. Fisheries 2011, 36, 436–449. [Google Scholar] [CrossRef] [Green Version]
- López-Delgado, E.O.; Winemiller, K.O.; Villa-Navarro, F.A. Local environmental factors influence beta-diversity patterns of tropical fish assemblages more than spatial factors. Ecology 2019, 101, e02940. [Google Scholar] [CrossRef]
- Tsang, Y.; Infante, D.M.; Wang, L.; Krueger, D.; Wieferich, D. Conserving stream fishes with changing climate: Assessing fish responses to changes in habitat over a large region. Sci. Total Environ. 2021, 755, 142503. [Google Scholar] [CrossRef]
- Karr, J.R. Biological monitoring and environmental assessment: A conceptual framework. Environ. Manag. 1987, 11, 249–256. [Google Scholar] [CrossRef]
- Wang, L.; Brenden, T.; Seelbach, P.; Cooper, A.; Allan, D.; Clark, R., Jr.; Wiley, M. Landscape based identification of human disturbance gradients and references for streams in Michigan. Environ. Monit. Assess. 2008, 141, 1–17. [Google Scholar] [CrossRef]
- Wang, L.; Wehrly, K.; Breck, J.; Kraft, L.S. Landscape based assessment of human disturbance for Michigan lakes. Environ. Manag. 2010, 46, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Dextrase, A.J.; Mandrak, N.E.; Schaefer, J.A. Modelling occupancy of an imperilled stream fish at multiple scales while accounting for imperfect detection: Implications for conservation. Freshw. Biol. 2014, 59, 1799–1815. [Google Scholar] [CrossRef]
- Grossman, G.D.; Freeman, M.C. Microhabitat use in a stream fish assemblage. J. Zool. 1987, 212, 151–176. [Google Scholar] [CrossRef]
- Lin, S.-J.; Tsai, S.-T.; Lin, J.-H.; Jong, K.-J.; Wang, Y.-K. The changes in structure and function of fish assemblages along environmental gradients in an intensive agricultural region of subtropical Taiwan. Pac. Sci. 2014, 68, 213–230. [Google Scholar] [CrossRef]
- Encalada, A.C.; Flecker, A.S.; Poff, N.L.; Suárez, E.; Herrera, G.A.; Ríos-Touma, B.; Jumani, S.; Larson, E.I.; Anderson, E.P. A global perspective on tropical montane rivers. Science 2019, 365, 1124–1129. [Google Scholar] [CrossRef]
- Lewis, W.M., Jr. Physical and chemical features of tropical flowing waters. In Tropical Stream Ecology; Dudgeon, D., Ed.; Academic Press: San Diego, CA, USA, 2008; pp. 1–22. [Google Scholar]
- Teng, W.-H.; Hsu, M.-I.; Wu, C.-H.; Chen, A.-S. Impact of flood disasters on Taiwan in the last quarter century. Nat. Hazards 2006, 37, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.S.; Yang, T.C.; Kuo, C.C. Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resour. Manag. 2006, 20, 1007–1023. [Google Scholar] [CrossRef]
- Yang, T.C.; Chen, C.; Kuo, C.M.; Tseng, H.W.; Yu, P.S. Drought risk assessments of water resources systems under climate change: A case study in Southern Taiwan. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 12395–12433. [Google Scholar] [CrossRef] [Green Version]
- Kao, S.J.; Milliman, J.D. Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. J. Geol. 2008, 116, 431–448. [Google Scholar] [CrossRef] [Green Version]
- Ostrand, K.G.; Wilde, G.R. Seasonal and spatial variation in a prairie stream-fish assemblage. Ecol. Freshw. Fish 2002, 11, 137–149. [Google Scholar] [CrossRef]
- Stewart-Koster, B.; Kennard, M.J.; Harch, B.D.; Sheldon, F.; Arthington, A.H.; Pusey, B.J. Partitioning the variation in stream fish assemblages within a spatio-temporal hierarchy. Mar. Freshw. Res. 2007, 58, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Espírito-Santo, H.M.V.; Magnusson, W.E.; Zuanon, J.; Mendonça, F.P.; Landeiro, V.L. Seasonal variation in the composition of fish assemblages in small Amazonian forest streams: Evidence for predictable changes. Freshw. Biol. 2009, 54, 536–548. [Google Scholar] [CrossRef]
- Yan, Y.Z.; He, S.; Chu, L.; Xiang, X.Y.; Jia, Y.J.; Tao, J.; Chen, Y.F. Spatial and temporal variation of fish assemblages in a subtropical small stream of the Huangshan Mountain. Curr. Zool. 2010, 56, 670–677. [Google Scholar] [CrossRef]
- Warfe, D.M.; Pettit, N.E.; Davies, P.M.; Pusey, B.J.; Hamilton, S.K.; Kennard, M.J.; Townsend, S.A.; Bayliss, P.; Ward, D.P.; Douglas, M.M.; et al. The ‘wet–dry’ in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Freshw. Biol. 2011, 56, 2169–2195. [Google Scholar] [CrossRef]
- Fitzgerald, D.B.; Winemiller, K.O.; Sabaj Pérez, M.H.; Sousa, L.M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 2017, 98, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Tew, K.S.; Han, C.C.; Chou, W.R.; Fang, L.S. Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environ. Biol. Fish. 2002, 65, 457–462. [Google Scholar] [CrossRef]
- Chuang, L.C.; Shieh, B.S.; Liu, C.C.; Lin, Y.S.; Liang, S.H. Effects of typhoon disturbance on the abundances of two mid-water fish species in a mountain stream of Northern Taiwan. Zool. Stud. 2008, 47, 564–573. Available online: https://zoolstud.sinica.edu.tw/Journals/47.5/564.pdf (accessed on 1 May 2022).
- Adams, S.B.; Warren, M.L.; Haag, W.R. Spatial and temporal patterns in fish assemblages of upper coastal plain streams, Mississippi, USA. Hydrobiologia 2004, 528, 45–61. [Google Scholar] [CrossRef]
- Wang, L.; Seelbach, P.W.; Hughes, R.M. Introduction to landscape influences on stream habitats and biological assemblages. Am. Fish. Soc. Symp. 2006, 48, 1–23. [Google Scholar]
- Resentini, A.; Goren, L.; Castelltort, S.; Garzanti, E. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. J. Geophys. Res. Earth Surf. 2017, 122, 1430–1454. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.T.; Kao, S.-J.; Huh, C.-A.; Hung, C.C. Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annu. Rev. Mar. Sci. 2013, 5, 47–68. [Google Scholar] [CrossRef]
- The Seventh River Management Office. The Review of the Master Plan of Improvement of Kaoping River Basin (2009–2014); The Seventh River Management Office of Water Resources Agency of the Ministry of Economic Affairs: Pingtung, Taiwan, 2009. (In Chinese)
- Huang, Y.-J. Richness Conservation of Plant Species by Landscape Ecology in Kao Ping River Basin. Master’s Thesis, National Pingtung University of Science and Technology, Pingtung, Taiwan, 2005. Unpublished (In Chinese). [Google Scholar]
- Wu, L.; Liang, J.; Wu, C.-C. Monsoonal influence on typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci. 2011, 68, 2208–2221. [Google Scholar] [CrossRef]
- Chien, F.C.; Kuo, H.C. On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res-Atmos. 2011, 116, D05104. [Google Scholar] [CrossRef] [Green Version]
- Tsou, C.-Y.; Feng, Z.-Y.; Chigira, M. Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan. Geomorphology 2011, 127, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia. Typhoon Fanapi. 2010. Available online: https://en.wikipedia.org/wiki/Typhoon_Fanapi (accessed on 9 January 2021).
- Kaufmann, P.; Robinson, E. Physical habitat characterization. In Environmental Monitoring and Assessment Program-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams; Lazorchak, J.M., Klemm, D.J., Peck, D.V., Eds.; U.S. Environmental Protection Agency: Washington, DC, USA, 1998; pp. 77–118. [Google Scholar]
- Kaufmann, P.; Levine, P.; Robinson, E.; Seeliger, C.; Peck, D. Quantifying Physical Habitat in Wadeable Streams; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
- Wolman, M. A method of sampling coarse river-bed material. Tran. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- VTDEC. Vermont Stream Geomorphic Assessment Phase 2 Handbook-Rapid Stream Assessment; Vermont Agency of Natural Resources, Water Quality Division: Waterbury, VT, USA, 2009.
- Shen, S.-J.; Wu, G.-Y. Fishes of Taiwa; National Museum of Marine Biology: Chechen, Taiwan, 2009.
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Peres-Neto, P.R.; Jackson, D.A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 2001, 129, 169–178. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Smilauer, P. Topics in constrained and unconstrained ordination. Plant Ecol. 2015, 216, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward selection of explanatory variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef]
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R Package Version 2.5–6; 2020. Available online: http://CRAN.R-project.org/package=vegan (accessed on 1 May 2022).
- Poos, M.S.; Jackson, D.A. Addressing the removal of rare species in multivariate bioassessments: The impact of methodological choices. Ecol. Indic. 2012, 18, 82–90. [Google Scholar] [CrossRef]
- Peres-Neto, P.R.; Legendre, P.; Dray, S.; Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 2006, 87, 2614–2625. [Google Scholar] [CrossRef]
- Han, C.C.; Tew, K.S.; Fang, L.S. Spatial and temporal variations of two cyprinids in a subtropical mountain reserve—A result of habitat disturbance. Ecol. Freshw. Fish 2007, 16, 395–403. [Google Scholar] [CrossRef]
- George, S.D.; Baldigo, B.P.; Smith, A.J.; Robinson, G.R. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river. Freshw. Biol. 2015, 60, 2511–2522. [Google Scholar] [CrossRef]
- Chea, R.; Pool, T.K.; Chevalier, M.; Ngor, P.; So, N.; Winemiller, K.O.; Lek, S.; Grenouillet, G. Impact of seasonal hydrological variation on tropical fish assemblages: Abrupt shift following an extreme flood event. Ecosphere 2020, 11, e03303. [Google Scholar] [CrossRef]
- Nislow, K.H.; Magilligan, F.J.; Folt, C.L.; Kennedy, B.P. Within-basin variation in the short-term effects of a major flood on stream fishes and invertebrates. J. Freshw. Ecol. 2002, 17, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Lytle, D.A.; Poff, N.L.R. Adaptation to natural flow regimes. Trends Ecol. Evol. 2004, 19, 94–100. [Google Scholar] [CrossRef]
- Roghair, C.N.; Dolloff, C.A.; Underwood, M.K. Response of a brook trout population and instream habitat to a catastrophic flood and debris flow. Trans. Am. Fish. Soc. 2002, 131, 718–730. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Montgomery, D.R. Altered regional sediment transport regime after a large typhoon, southern Taiwan. Geology 2013, 41, 1223–1226. [Google Scholar] [CrossRef]
- Smith, W.E.; Kwak, T.J. Tropical insular fish assemblages are resilient to flood disturbance. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Økland, R.H. On the variation explained by ordination and constrained ordination axes. J. Veg. Sci. 1999, 10, 131–136. [Google Scholar] [CrossRef]
- Koizumi, I.; Kanazawa, Y.; Tanaka, Y. The fishermen were right: Experimental evidence for tributary refuge hypothesis during floods. Zool. Sci. 2013, 30, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Arrington, D.A.; Winemiller, K.O. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. J. N. Am. Benthol. Soc. 2006, 25, 126–141. [Google Scholar] [CrossRef]
- Paine, M.D.; Dodson, J.J.; Power, G. Habitat and food resource partitioning among four species of darters (Percidae: Etheostoma) in a southern Ontario stream. Can. J. Zool. 1982, 60, 1635–1641. [Google Scholar] [CrossRef]
- Herder, F.; Freyhof, J. Resource partitioning in a tropical stream fish assemblage. J. Fish Biol. 2006, 69, 571–589. [Google Scholar] [CrossRef]
- Stoffel, M.; Wyżga, B.; Marston, R.A. Floods in mountain environments: A synthesis. Geomorphology 2016, 272, 1–9. [Google Scholar] [CrossRef]
- Reckendorfer, W.; Funk, A.; Gschöpf, C.; Hein, T.; Schiemer, F. Aquatic ecosystem functions of an isolated floodplain and their implications for flood retention and management. J. Appl. Ecol. 2013, 50, 119–128. [Google Scholar] [CrossRef]
- Zbinden, Z.D.; Matthews, W.J. Beta diversity of stream fish assemblages: Partitioning variation between spatial and environmental factors. Freshw. Biol. 2017, 62, 1460–1471. [Google Scholar] [CrossRef]
- Aroviita, J.; Mykrä, H.; Muotka, T.; Hämäläinen, H. Influence of geographical extent on typology- and model-based assessments of taxonomic completeness of river macroinvertebrates. Freshw. Biol. 2009, 54, 1774–1787. [Google Scholar] [CrossRef]
- Chen, R.-T.; Ho, P.-H.; Lee, H.-H. Distribution of exotic freshwater fishes and shrimps in Taiwan. Endem. Species Res. 2003, 5, 33–46. (In Chinese) [Google Scholar]
Fish Metrics | Abbreviations | Pre-Typhoon Season | Post-Typhoon Season | ||
---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | ||
Number of fish species * | NFS | 1–11 | 4.9 ± 2.6 | 1–8 | 3.8 ± 2.0 |
Fish abundance (individuals/100 m) ** | ABN | 1–212 | 57.7 ± 56.1 | 1–67 | 22.2 ± 20.4 |
Shannon–Wiener diversity | SW | 0–1.9 | 1.0 ± 0.5 | 0–1.8 | 0.9 ± 0.5 |
Invasive individuals% | Inv% | 0–100 | 8.1 ± 24.6 | 0–100 | 5.3 ± 19.8 |
Benthic individuals% * | Ben% | 0–100 | 66.1 ± 30.9 | 0–100 | 52.8 ± 35.0 |
Water column individuals% | Wcol% | 0–100 | 26.3 ± 29.7 | 0–100 | 30.0 ± 31.8 |
Sub-benthic individuals% * | Sben% | 0–40 | 7.6 ± 9.9 | 0–80 | 17.3 ± 21.0 |
Highly tolerant individuals% | HT% | 0–100 | 17.0 ± 29.5 | 0–100 | 15.4 ± 32.2 |
Intolerant individuals% | Int% | 0–100 | 31.1 ± 40.4 | 0–100 | 27.6 ± 36.2 |
Medium tolerant individuals% | MT% | 0–100 | 51.9 ± 38.6 | 0–100 | 57.1 ± 39.9 |
Herbivore individuals% | Herb% | 0–32.9 | 3.6 ± 7.6 | 0–26.9 | 2.7 ± 6.6 |
Insectivore individuals% | Ins% | 0–100 | 48.8 ± 37.1 | 0–100 | 41.9 ± 32.8 |
Omnivore individuals% | Omn% | 0–100 | 42.5 ± 34.2 | 0–100 | 45.9 ± 36.8 |
Piscvore/insectivore individuals% | PI% | 0–100 | 5.1 ± 18.3 | 0–80 | 9.5 ± 17.8 |
Homalopterid individuals% | Hom% | 0–100 | 22.8 ± 35.8 | 0–100 | 19.7 ± 36.6 |
Cool-water individuals% | Cool% | 0–100 | 25.9 ± 40.3 | 0–100 | 25.6 ± 36.9 |
Categories and Variables | Codes | Pre-Typhoon Season | Post-Typhoon Season | ||
---|---|---|---|---|---|
Range | Mean ± 1SD | Range | Mean ± 1SD | ||
Physical habitat | |||||
Elevation (m) | ELEV | 38–553 | 190.9 ± 154.4 | 38–553 | 190.9 ± 154.4 |
Stream order | STRLEV | 1–5 | 3.5 ± 1.2 | 1–5 | 3.5 ± 1.2 |
Sinuosity | SINU | 1.05–2.07 | 1.39 ± 0.26 | 1.05–2.07 | 1.39 ± 0.26 |
Bankfull height (cm) | BANKHT | 15–300 | 106.7 ± 69.7 | 37–213 | 101.4 ± 54.9 |
Bankfull width (m) | BANKWID | 8–70 | 24.6 ± 17.6 | 6–64 | 22.6 ± 16.6 |
Flood-prone width (m) | FLODWID | 8–400 | 93.6 ± 107.8 | 8–384 | 85.3 ± 91.2 |
Entrenchment ratio | ENCHRA | 1–11.1 | 3.4 ± 2.9 | 1–21.17 | 4.0 ± 4.5 |
Stream slope (%) | SLOPE | 0–0.05 | 0.013 ± 0.011 | 0–0.04 | 0.009 ± 0.009 |
Mean velocity (m/s) | XVEC | 0.12–1.54 | 0.64 ± 0.38 | 0.17–1.11 | 0.48 ± 0.24 |
Flow (m3/s) | FLOW | 0.01–11.30 | 2.73 ± 3.11 | 0.04–11.90 | 2.64 ± 3.31 |
Mean depth (cm) | XDEPTH | 8.2–47.1 | 25.9 ± 12.2 | 7.84–54.85 | 26.0 ± 10.6 |
Width/depth ratio (%) * | W/D | 11.8–217.2 | 61.6 ± 48.3 | 11.0–105.9 | 39.1 ± 21.4 |
Mean wetted width (m) | XWT_WID | 2.9–47.6 | 14.6 ± 12.0 | 1.3–34.7 | 10.9 ± 8.1 |
Cascade (%) | PCT_CA | 0–54.0 | 2.4 ± 10.0 | 0–0 | 0 ± 0 |
Rapid (%) ** | PCT_RA | 0–96.0 | 31.6 ± 35.7 | 0–84.0 | 7.5 ± 20.9 |
Riffle (%) | PCT_RF | 0–44.0 | 10.8 ± 11.6 | 0–100 | 21.8 ± 30.4 |
Run (%) * | PCT_RN | 0–100 | 28.7 ± 34.1 | 0–100 | 49.2 ± 37.1 |
Pool (%) | PCT_P | 0–100 | 25.0 ± 34.9 | 0–100 | 20.3 ± 32.9 |
Fast-water habitat (%) | PCT_FAST | 0–100 | 73.5 ± 33.0 | 0–100 | 78.5 ± 32.4 |
All pool types (%) | PCT_POOL | 0–100 | 27.3 ± 34.4 | 0–100 | 21.5 ± 32.4 |
Median substrata (cm) | SUB_MED | 0.01–100 | 18.8 ± 17.8 | 0.01–13 | 4.6 ± 4.1 |
Interquartile of substrate size (mm) | SUB_IQR | 0–399 | 20.1 ± 71.8 | 0–397 | 26.6 ± 83.7 |
Substrate cobble (%) | PCT_CB | 0–78.0 | 32.3 ± 24.6 | 0–84.0 | 34.1 ± 29.1 |
Substrate gravel (%) | PCT_G | 0–87.0 | 31.5 ± 23.2 | 0–98.0 | 34.5 ± 26.4 |
Substrate sand and fine (%) | PCT_SAFN | 0–100 | 28.4 ± 30.8 | 0–100 | 28.3 ± 35.4 |
Benthic filamentous algae (%) | XFC_ALG | 0–44.0 | 5.0 ± 10.4 | 0–33 | 4.2 ± 9.7 |
Aquatic macrophyte cover (%) | XFC_AQM | 0–32.0 | 4.5 ± 7.7 | 0–23 | 3.7 ± 6.4 |
Water quality | |||||
Conductivity (μS/cm) | WQCON | 85.6–633.2 | 346.5 ± 96.1 | 233.6–498.5 | 314.5 ± 61.7 |
Phosphate (mg/L) ** | WQPO4 | 0.01–0.18 | 0.056 ± 0.038 | 0–0.09 | 0.031 ± 0.021 |
Total inorganic N (mg/L) * | WQTIN | 0.24–1.43 | 0.61 ± 0.25 | 0.40–1.35 | 0.76 ± 0.26 |
Dissolved oxygen (mg/L) | WQDO | 1.3–6.47 | 4.65 ± 1.18 | 2.13–8.34 | 4.94 ± 1.31 |
Water temperature (°C) ** | WQTEM | 16.9–29.4 | 25.4 ± 3.1 | 18.3–26.1 | 22.0 ± 2.2 |
pH ** | WQPH | 7.48–8.75 | 8.31 ± 0.34 | 6.70–8.18 | 7.66 ± 0.41 |
Salinity (PSU) | WQSAL | 0.10–0.30 | 0.23 ± 0.06 | 0.10–0.30 | 0.21 ± 0.04 |
Turbidity (NTU) * | WQTUR | 3.8–1100.0 | 219.4 ± 256.7 | 1.9–634.7 | 107.7 ± 129.3 |
Suspended solid (mg/L) ** | WQSS | 0–0.26 | 0.06 ± 0.07 | 0–0.09 | 0.01 ± 0.02 |
Riparian conditions | |||||
Mean bank canopy density (%) ** | XCDENBK | 0–45.0 | 11.3 ± 15.0 | 0–24.0 | 2.7 ± 6.1 |
Midstream mean canopy density (%) | XCDDENMID | 0–25.0 | 1.8 ± 4.8 | 0–3 | 0.1 ± 0.6 |
Riparian canopy and midlayer woody cover (%) | XCMW | 0–10 | 1.6 ± 2.9 | 0–23 | 1.1 ± 4.3 |
Three-layer riparian cover (%) | XCMG | 0–171 | 36.0 ± 47.9 | 0–149 | 38.9 ± 50.3 |
Riparian and midlayer canopy (%) | XPCM | 0–3.36 | 0.6 ± 1.0 | 0–3.6 | 0.7 ± 1.2 |
Three-layer riparian vegetation presence | XPCMG | 0–7.8 | 1.6 ± 2.2 | 0–6.8 | 1.8 ± 2.3 |
Channel revetment (%) | W1H_WALL | 0–100 | 29.6 ± 40.1 | 0–100 | 28.2 ± 40.7 |
Buildings (%) | W1H_BLDG | 0–14 | 1.0 ± 2.9 | 0–11 | 0.7 ± 2.3 |
Pavement (%) | W1H_PVMT | 0–63 | 9.4 ± 14.7 | 0–33 | 3.8 ± 9.7 |
Agriculture (%) | W1H_AG | 0–44 | 5.3 ± 12.1 | 0–33 | 5.0 ± 11.2 |
Common Names | Species | Code | Spatial Usage | Status | Pre-Typhoon Season | Post-Typhoon Season | ||
---|---|---|---|---|---|---|---|---|
Range | Mean ± SD | Range | Mean ± SD | |||||
Midas cichlid | Amphilophus citrinellus | AC | S | Inv. | 0–1 | 0.03 ± 0.18 | ||
Japanese eel | Anguilla japonica | AJ | B | Catad. | 0–1 | 0.03 ± 0.18 | ||
Marbled eel | Anguilla marmorata | AM | B | Catad. | 0–1 | 0.07 ± 0.25 | ||
Taiwan striped barb | Acrossocheilus paradoxus | AP | S | Nat. | 0–5 | 0.80 ± 1.52 | 0–8 | 0.60 ± 1.59 |
Silver barb | Barbonymus gonionotus | BG | S | Inv. | 0–1 | 0.03 ± 0.18 | ||
Golden carp | Carassius auratus auratus | CA | S | Nat. | 0–2 | 0.07 ± 0.37 | 0–1 | 0.03 ± 0.18 |
Dace | Candidia barbata | CB | C | Nat. | 0–80 | 4.57 ± 14.97 | 0–14 | 1.43 ± 3.56 |
Common carp | Cyprinus carpio carpio | CC | S | Nat. | 0–2 | 0.07 ± 0.37 | ||
Chinese catfish | Clarias fuscus | CF | B | Nat. | 0–2 | 0.10 ± 0.40 | 0–2 | 0.10 ± 0.40 |
Siberian spiny loach | Cobitis sinensis | CS | B | Nat. | 0–25 | 3.23 ± 5.89 | 0–24 | 1.37 ± 4.60 |
Snakehead murrel | Channa striata | CT | C | Inv. | 0–1 | 0.07 ± 0.25 | 0–1 | 0.03 ± 0.18 |
Mosquitofish | Gambusia affinis | GA | C | Inv. | 0–12 | 0.43 ± 2.19 | 0–13 | 0.43 ± 2.37 |
Hainan eight-barbel gudgeon | Gobiobotia intermedia | GI | B | Nat. | 0–32 | 1.60 ± 6.07 | 0–20 | 1.13 ± 4.28 |
Formosan river loach | Hemimyzon formosanus | HF | B | Nat. | 0–127 | 10.37 ± 25.43 | 0–49 | 2.80 ± 9.48 |
Sharpbelly | Hemiculter leucisculus | HL | C | Nat. | 0–2 | 0.07 ± 0.37 | 0–3 | 0.13 ± 0.57 |
Suckermouth catfish | Hypostomus plecostomus | HP | B | Inv. | 0–3 | 0.10 ± 0.55 | 0–4 | 0.23 ± 0.90 |
Deep-body gudgeon | Microphysogobio alticorpus | MA | B | Nat. | 0–76 | 3.63 ± 13.88 | 0–4 | 0.33 ± 0.88 |
Deep-body shovelnose minnow | Onychostoma alticorpus | OA | S | Nat. | 0–51 | 3.07 ± 10.12 | 0–7 | 0.63 ± 1.67 |
Taiwan shoveljaw carp | Onychostoma barbatulum | OB | S | Nat. | 0–5 | 0.17 ± 0.91 | ||
Freshwater minnow | Opsariichthys pachycephalus | OP | C | Nat. | 0–62 | 8.23 ± 13.61 | 0–25 | 3.03 ± 5.51 |
Tilapia | Oreochromis sp. | OR | C | Inv. | 0–11 | 0.63 ± 2.25 | 0–7 | 0.63 ± 1.94 |
Taiwan bitterling | Paracheilognathus himantegus | PH | S | Nat. | 0–3 | 0.13 ± 0.57 | 0–5 | 0.23 ± 0.97 |
Guppy | Poecilia reticulata | PR | C | Inv. | 0–1 | 0.03 ± 0.18 | ||
Oriental river goby | Rhinogobius giurinus | RG | B | Amph. | 0–11 | 0.63 ± 2.16 | 0–1 | 0.10 ± 0.31 |
Banded goby | Rhinogobius maculafasciatus | RM | B | Amph. | 0–80 | 4.67 ± 15.51 | 0–57 | 4.47 ± 12.80 |
Southern Taiwan goby | Rhinogobius nantaiensis | RN | B | Nat. | 0–108 | 13.47 ± 26.51 | 0–18 | 2.37 ± 4.69 |
Rosy bitterling | Rhodeus ocellatus | RO | S | Nat. | 0–1 | 0.03 ± 0.18 | ||
Red-spotted goby | Rhinogobius rubromaculatus | RR | B | Nat. | 0–13 | 0.43 ± 2.37 | ||
Amur catfish | Silurus asotus | SA | B | Nat. | 0–1 | 0.07 ± 0.25 | ||
Holland’s carp | Spinibarbus hollandi | SH | S | Nat. | 0–25 | 1.13 ± 4.55 | 0–9 | 1.00 ± 2.24 |
Monk goby | Sicyopterus japonicus | SJ | B | Amph. | 0–1 | 0.03 ± 0.18 | 0–1 | 0.03 ± 0.18 |
Southern Taiwan sucker loach | Sinogastromyzon nantaiensis | SN | B | Nat. | 0–5 | 0.33 ± 1.03 | 0–6 | 0.40 ± 1.33 |
Variables | Pre-Typhoon Season | Post-Typhoon Season | Two Seasons Combined | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NFS | ABN | Ben% | Sben% | NFS | ABN | Ben% | Sben% | NFS | ABN | Ben% | Sben% | |
ELEV | −0.39 * | −0.43 * | −0.40 ** | |||||||||
BANKHT | 0.51 ** | 0.40 ** | ||||||||||
BANKWID | 0.45 * | 0.32 * | ||||||||||
FLODWID | −0.47 ** | −0.46 * | −0.26 * | |||||||||
ENCHRA | −0.53 ** | −0.45 * | −0.35 ** | |||||||||
XVEC | 0.42 * | 0.51 ** | 0.31 * | |||||||||
FLOW | 0.60 ** | 0.45 ** | ||||||||||
XDEPTH | 0.41 * | 0.42 * | 0.26 * | |||||||||
XWT_WID | 0.52 ** | 0.35 ** | ||||||||||
W/D | 0.53 ** | 0.26 * | ||||||||||
PCT_CA | 0.46 * | 0.47 ** | 0.36 ** | |||||||||
PCT_RA | 0.42 * | 0.35 ** | ||||||||||
PCT_RF | 0.37 * | 0.46 * | 0.33 ** | |||||||||
PCT_RN | 0.38 * | |||||||||||
PCT_P | −0.41 * | −0.41 * | −0.33 * | |||||||||
PCT_FAST | 0.43 * | 0.37 ** | ||||||||||
PCT_POOL | −0.43 * | −0.37 ** | ||||||||||
SUB_MED | 0.46 ** | 0.29 * | ||||||||||
PCT_CB | 0.49 ** | 0.32 * | 0.27 * | |||||||||
PCT_SAFN | −0.27 * | |||||||||||
XFC_ALG | 0.50 ** | 0.36 * | ||||||||||
XFC_AQM | 0.39 * | 0.37 ** | ||||||||||
WQTIN | −0.26 * | |||||||||||
WQDO | 0.39 * | 0.37 * | 0.38 ** | |||||||||
WQTEM | −0.43 * | −0.60 ** | 0.26 * | −0.28 * | ||||||||
WQPH | 0.45 * | 0.33 * | ||||||||||
WQSS | 0.54 ** | 0.28 * | ||||||||||
WQTUR | −0.41 * | |||||||||||
XCDENBK | −0.42 * | 0.29 * | ||||||||||
XCMW | 0.48 ** | 0.39 ** | 0.26 * | |||||||||
XCMG | 0.47 * | 0.52 ** | 0.38 * | 0.48 ** | ||||||||
XPCM | 0.41 * | 0.36 ** | ||||||||||
XPCMG | 0.47 * | 0.52 ** | 0.38 * | 0.48 ** | ||||||||
W1H_WALL | −0.39 * | 0.31 * | −0.36 ** | |||||||||
W1H_AG | −0.34 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-K.; Wang, L.; Kuo, R.-L. Relationships between Fish Communities and Habitat before and after a Typhoon Season in Tropical Mountain Streams. Water 2022, 14, 2220. https://doi.org/10.3390/w14142220
Wang Y-K, Wang L, Kuo R-L. Relationships between Fish Communities and Habitat before and after a Typhoon Season in Tropical Mountain Streams. Water. 2022; 14(14):2220. https://doi.org/10.3390/w14142220
Chicago/Turabian StyleWang, Yi-Kuang, Lizhu Wang, and Rey-Lin Kuo. 2022. "Relationships between Fish Communities and Habitat before and after a Typhoon Season in Tropical Mountain Streams" Water 14, no. 14: 2220. https://doi.org/10.3390/w14142220
APA StyleWang, Y.-K., Wang, L., & Kuo, R.-L. (2022). Relationships between Fish Communities and Habitat before and after a Typhoon Season in Tropical Mountain Streams. Water, 14(14), 2220. https://doi.org/10.3390/w14142220