Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Preparation and Biochar Synthesis
2.2. Adsorbent Materials Characterization
2.2.1. Morphology and Structure
2.2.2. Mineral Composition
2.2.3. Textural Properties
2.2.4. Surface Chemical Properties
2.3. Batch Adsorption Experiments
2.3.1. Dye Solutions Preparation and Analysis
2.3.2. Adsorption Assays
2.3.3. Kinetic and Isotherm Data Modelling
3. Results and Discussion
3.1. Adsorbent Materials Chracterization
3.2. Adsorption Study
3.2.1. Kinetic Behavior
3.2.2. Effect of Initial pH
3.2.3. Effect of Adsorbents Dosage
3.2.4. Effect of Salts
3.2.5. Effect of Initial Concentration-Isotherm Investigation
3.2.6. Effect of Temperature
3.3. Involved Mechanisms Exploration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesar da Silva, P.; Cardoso de Oliveira Neto, G.; Ferreira Correia, J.M.; Pujol Tucci, H.N. Evaluation of economic, environmental and operational performance of the adoption of cleaner production: Survey in large textile industries. J. Clean. Prod. 2021, 278, 123855. [Google Scholar] [CrossRef]
- Beluci, N.; de Natália, C.L.; Mateus, G.A.P.; Miyashiro, C.S.; Homem, N.C.; Gomes, R.G.; Fagundes-Klen, M.R.; Bergamasco, R.; Vieira, A.M.S. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO 2 -modified membranes to improve the removal of reactive black 5 dye. Sci. Total Environ. 2019, 664, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Donkadokula, N.Y.; Kola, A.K.; Naz, I.; Saroj, D. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Biotechnol. 2020, 19, 543–560. [Google Scholar] [CrossRef]
- Moradihamedani, P. Recent advances in dye removal from wastewater by membrane technology: A review. Polym. Bull. 2022, 79, 2603–2631. [Google Scholar] [CrossRef]
- Bilińska, L.; Gmurek, M. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions. Water Resour. Ind. 2021, 26, 100160. [Google Scholar] [CrossRef]
- Zhang, Z.; Malik, M.Z.; Khan, A.; Ali, N.; Malik, S.; Bilal, M. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Sci. Total Environ. 2022, 807, 150856. [Google Scholar] [CrossRef]
- Roa, K.; Oyarce, E.; Boulett, A.; ALSamman, M.; Oyarzún, D.; Pizarro, G.D.C.; Sánchez, J. Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustain. Mater. Technol. 2021, 29, e00320. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Carr, C.M. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere 2021, 265, 129087. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Abu-Nada, A.; Abdala, A.; McKay, G. Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review. J. Environ. Chem. Eng. 2021, 9, 105858. [Google Scholar] [CrossRef]
- Bushra, R.; Shahadat, M.; Ahmad, A.; Nabi, S.A.; Umar, K.; Oves, M.; Raeissi, A.S.; Muneer, M. Synthesis, characterization, antimicrobial activity and applications of polyanilineTi(IV)arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J. Hazard. Mater. 2014, 264, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Aggarwal, I.; Kumar, H.; Prasad, L.; Kumar, A.; Sharma, A.; Vo, D.V.N.; Van Thuan, D.; Mishra, V. Magnetite nanoparticles as sorbents for dye removal: A review. Environ. Chem. Lett. 2021, 19, 2487–2525. [Google Scholar] [CrossRef]
- Usman, M.; Martin, S.; Cimetière, N.; Giraudet, S.; Chatain, V.; Hanna, K. Sorption of nalidixic acid onto micrometric and nanometric magnetites: Experimental study and modeling. Appl. Surf. Sci. 2014, 299, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Sutar, S.; Patil, P.; Jadhav, J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ. Res. 2022, 209, 112841. [Google Scholar] [CrossRef] [PubMed]
- Jellali, S.; El-Bassi, L.; Charabi, Y.; Uaman, M.; Khiari, B.; Al-Wardy, M.; Jeguirim, M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. J. Environ. Manag. 2022, 305, 114368. [Google Scholar] [CrossRef] [PubMed]
- Jellali, S.; Khiari, B.; Usman, M.; Hamdi, H.; Charabi, Y.; Jeguirim, M. Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renew. Sustain. Energy Rev. 2021, 144, 111068. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Li, P.; Yang, L.; Wu, L.; Gao, F.; Qi, X.; Zhang, Z. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresour. Technol. 2021, 319, 124199. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Jellali, S.; Charabi, Y.; Usman, M.; Al-Badi, A.; Jeguirim, M. Investigations on biogas recovery from anaerobic digestion of raw sludge and its mixture with agri-food wastes: Application to the largest industrial estate in Oman. Sustainability 2021, 13, 3698. [Google Scholar] [CrossRef]
- Racek, J.; Sevcik, J.; Chorazy, T.; Kucerik, J.; Hlavinek, P. Biochar—Recovery Material from Pyrolysis of Sewage Sludge: A Review. Waste Biomass Valorization 2020, 11, 3677–3709. [Google Scholar] [CrossRef]
- Sewu, D.D.; Lee, D.S.; Woo, S.H.; Kalderis, D. Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison. Korean J. Chem. Eng. 2021, 38, 531–539. [Google Scholar] [CrossRef]
- Raj, A.; Yadav, A.; Rawat, A.P.; Singh, A.K.; Kumar, S.; Pandey, A.K.; Sirohi, R.; Pandey, A. Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environ. Technol. Innov. 2021, 23, 101556. [Google Scholar] [CrossRef]
- Yin, Q.; Nie, Y.; Han, Y.; Wang, R.; Zhao, Z. Properties and the Application of Sludge-Based Biochar in the Removal of Phosphate and Methylene Blue from Water: Effects of Acid Treating. Langmuir 2022, 38, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Yac’cob, N.A.N.; Ngadi, N.; Hassan, O.; Inuwa, I.M. From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption. Chinese J. Chem. Eng. 2018, 26, 870–878. [Google Scholar] [CrossRef]
- Sierra, I.; Iriarte-Velasco, U.; Ayastuy, J.L.; Aguayo, A.T. Production of magnetic sewage sludge biochar: Investigation of the activation mechanism and effect of the activating agent and temperature. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Zhai, S.; Li, M.; Wang, D.; Ju, X.; Fu, S. Cyano and acylamino group modification for tannery sludge bio-char: Enhancement of adsorption universality for dye pollutants. J. Environ. Chem. Eng. 2021, 9, 104939. [Google Scholar] [CrossRef]
- Zhao, F.; Shan, R.; Li, W.; Zhang, Y.; Yuan, H.; Chen, Y. Synthesis, Characterization, and Dye Removal of ZnCl2-Modified Biochar Derived from Pulp and Paper Sludge. ACS Omega 2021, 6, 34712–34723. [Google Scholar] [CrossRef]
- Srivatsav, P.; Bhargav, B.S.; Shanmugasundaram, V.; Arun, J.; Gopinath, K.P.; Bhatnagar, A. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (Dyes) from aqueous environment: A review. Water 2020, 12, 3561. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Gómez-Pacheco, C.V.; Rivera-Utrilla, J.; Sánchez-Polo, M.; López-Peñalver, J.J. Optimization of the preparation process of biological sludge adsorbents for application in water treatment. J. Hazard. Mater. 2012, 217–218, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Rangabhashiyam, S.; Lins, P.V.d.S.; Oliveira, L.M.T.d.M.; Sepulveda, P.; Ighalo, J.O.; Rajapaksha, A.U.; Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environ. Pollut. 2022, 293, 118581. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.H.; Cheng, H.; Chen, G.Y. Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Anal. Appl. Pyrolysis 2012, 93, 113–119. [Google Scholar] [CrossRef]
- Kaçan, E.; Kütahyali, C. Adsorption of strontium from aqueous solution using activated carbon produced from textile sewage sludges. J. Anal. Appl. Pyrolysis 2012, 97, 149–157. [Google Scholar] [CrossRef]
- Carey, D.E.; McNamara, P.J.; Zitomer, D.H. Biochar from Pyrolysis of Biosolids for Nutrient Adsorption and Turfgrass Cultivation. Water Environ. Res. 2015, 87, 2098–2106. [Google Scholar] [CrossRef] [Green Version]
- Gopinath, A.; Divyapriya, G.; Srivastava, V.; Laiju, A.R.; Nidheesh, P.V.; Kumar, M.S. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environ. Res. 2021, 194, 110656. [Google Scholar] [CrossRef]
- Ding, X.; Chen, H.; Yang, Q.; Wei, J.; Wei, D. Effect of sludge property on the synthesis, characterization and sorption performance of sludge-based biochar. Bioresour. Technol. Rep. 2019, 7, 100204. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Assadi, A.A.; Bousselmi, L. Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 2016, 57, 22107–22119. [Google Scholar] [CrossRef]
- Haddad, K.; Jellali, S.; Jaouadi, S.; Benltifa, M.; Mlayah, A.; Hamzaoui, A.H. Raw and treated marble wastes reuse as low cost materials for phosphorus removal from aqueous solutions: Efficiencies and mechanisms. Comptes Rendus Chim. 2015, 18, 75–87. [Google Scholar] [CrossRef]
- Xiao, B.; Dai, Q.; Yu, X.; Yu, P.; Zhai, S.; Liu, R.; Guo, X.; Liu, J.; Chen, H. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge. J. Hazard. Mater. 2018, 343, 347–355. [Google Scholar] [CrossRef]
- Jellali, S.; Azzaz, A.A.; Jeguirim, M.; Hamdi, H.; Mlayah, A. Use of Lignite as a Low-Cost Material for Cadmium and Copper Removal from Aqueous Solutions: Assessment of Adsorption Characteristics and Exploration of Involved Mechanisms. Water 2021, 13, 164. [Google Scholar] [CrossRef]
- Palmieri, S.; Cipolletta, G.; Pastore, C.; Giosuè, C.; Akyol, Ç.; Eusebi, A.L.; Frison, N.; Tittarelli, F.; Fatone, F. Pilot scale cellulose recovery from sewage sludge and reuse in building and construction material. Waste Manag. 2019, 100, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Shafawi, A.N.; Mohamed, A.R.; Lahijani, P.; Mohammadi, M. Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. J. Environ. Chem. Eng. 2021, 9, 106869. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Zhang, S.; Chen, Y.D.; Wang, R.; Ho, S.H. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environ. Sci. Ecotechnol. 2022, 10, 100168. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Li, B.; Fan, S.; Xu, H.; Guan, D.X. Improved adsorption properties of tetracycline on KOH/KMnO4 modified biochar derived from wheat straw. Chemosphere 2022, 296, 133981. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Matei Ghimbeu, C.; Jellai, S.; El-Bassi, L.; Jeguirim, M. Olive Mill by-Products Thermochemical Conversion via Hydrothermal Carbonization and Slow Pyrolysis: Detailed Comparison between the Generated Hydrochars and Biochars Characteristics. Processes 2022, 10, 231. [Google Scholar] [CrossRef]
- Ma, W.; Du, G.; Li, J.; Fang, Y.; Hou, L.; Chen, G.; Ma, D. Supercritical water pyrolysis of sewage sludge. Waste Manag. 2017, 59, 371–378. [Google Scholar] [CrossRef]
- Ateş, A. The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Chen, W.; Guo, Y.; Mi, X.; Yu, Y.; Li, G. Enhanced adsorptive removal of methylene blue by low-temperature biochar derived from municipal activated sludge. Desalin. Water Treat. 2020, 188, 257–265. [Google Scholar] [CrossRef]
- Kuo, H.C.; Lin, Y.G.; Chiang, C.L.; Liu, S.H. FeN@N-doped graphitic biochars derived from hydrothermal-microwave pyrolysis of cellulose biomass for fuel cell catalysts. J. Anal. Appl. Pyrolysis 2021, 153, 104991. [Google Scholar] [CrossRef]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.L.; Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 10104–10137. [Google Scholar] [CrossRef] [Green Version]
- Jindarom, C.; Meeyoo, V.; Kitiyanan, B.; Rirksomboon, T.; Rangsunvigit, P. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chem. Eng. J. 2007, 133, 239–246. [Google Scholar] [CrossRef]
- Tang, Y.; Alam, M.S.; Konhauser, K.O.; Alessi, D.S.; Xu, S.; Tian, W.J.; Liu, Y. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J. Clean. Prod. 2019, 209, 927–936. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Taqvi, S.A.; Naqvi, M.; Niazi, M.B.K.; Noor, T.; Farooq, W. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 2018, 233, 529–538. [Google Scholar] [CrossRef]
- Chang, S.-S.; Clair, B.; Ruelle, J.; Beauchene, J.; Di Renzo, F.; Quignard, F.; Zhao, G.-J.; Yamamoto, H.; Gril, J. Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot. 2009, 60, 3023–3030. [Google Scholar] [CrossRef] [Green Version]
- Hadroug, S.; Jellali, S.; Amine, A.; Marzena, A.; Helmi, K.; James, H. Valorization of salt post - modified poultry manure biochars for phosphorus recovery from aqueous solutions: Investigations on adsorption properties and involved mechanism. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon N. Y. 2003, 41, 267–275. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mirghaffari, N. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation. Xinxing Tan Cailiao/New Carbon Mater. 2015, 30, 310–318. [Google Scholar] [CrossRef]
- Xin, W.; Song, Y.; Wu, Y. Enhanced Capture Ability of Sludge-Derived Mesoporous Biochar with a Template-like Method. Langmuir 2019, 35, 6039–6047. [Google Scholar] [CrossRef]
- Wahab, M.A.; Hassine, R.B.; Jellali, S. Removal of phosphorus from aqueous solution by Posidonia oceanica fibers using continuous stirring tank reactor. J. Hazard. Mater. 2011, 189, 577–585. [Google Scholar] [CrossRef]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Chen, S.; Qin, C.; Wang, T.; Chen, F.; Li, X.; Hou, H.; Zhou, M. Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J. Mol. Liq. 2019, 285, 62–74. [Google Scholar] [CrossRef]
- Chaukura, N.; Murimba, E.C.; Gwenzi, W. Sorptive removal of methylene blue from simulated wastewater using biochars derived from pulp and paper sludge. Environ. Technol. Innov. 2017, 8, 132–140. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, G.; Wei, D.; Yan, T.; Xue, X.; Shi, S.; Wei, Q. Preparation and utilization of anaerobic granular sludge-based biochar for the adsorption of methylene blue from aqueous solutions. J. Mol. Liq. 2014, 198, 334–340. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, W.; Zhai, L.; Wang, F.; Zhang, J.; Li, D. Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. J. Environ. Chem. Eng. 2021, 9, 105951. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Salama, A. New sustainable hybrid material as adsorbent for dye removal from aqueous solutions. J. Colloid Interface Sci. 2017, 487, 348–353. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Li, J.; Yu, H.; Peng, Y. Removal of organic contaminant by municipal sewage sludge-derived hydrochar: Kinetics, thermodynamics and mechanisms. Water Sci. Technol. 2018, 78, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Alalwan, H.A.; Mohammed, M.M.; Sultan, A.J.; Abbas, M.N.; Ibrahim, T.A.; Aljaafari, H.A.S.; Alminshid, A.A. Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresour. Technol. Rep. 2021, 14, 100680. [Google Scholar] [CrossRef]
- Mlayah, A.; Jellali, S. Study of continuous lead removal from aqueous solutions by marble wastes: Efficiencies and mechanisms. Int. J. Environ. Sci. Technol. 2015, 12, 2965–2978. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Sun, L.; Jiao, L.; Peng, L.X.; Lei, Z.H.; Wang, Y.X.; Lin, J. Adsorption of methylene blue by residue biochar from copyrolysis of dewatered sewage sludge and pine sawdust. Desalin. Water Treat. 2013, 51, 7081–7087. [Google Scholar] [CrossRef]
- Kim, H.; Kang, S.O.; Park, S.; Park, H.S. Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J. Ind. Eng. Chem. 2015, 21, 1191–1196. [Google Scholar] [CrossRef]
- Hadroug, S.; Jellali, S.; Jeguirim, M.; Kwapinska, M.; Hamdi, H.; Leahy, J.J.; Kwapinski, W. Static and dynamic investigations on leaching/retention of nutrients from raw poultry manure biochars and amended agricultural soil. Sustainability 2021, 13, 1212. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Fan, S. Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes 2019, 7, 891. [Google Scholar] [CrossRef] [Green Version]
- Azzaz, A.A.; Jellali, S.; Souissi, R.; Ergaieg, K.; Bousselmi, L. Alkaline-treated sawdust as an effective material for cationic dye removal from textile effluents under dynamic conditions: Breakthrough curve prediction and mechanism exploration. Environ. Sci. Pollut. Res. 2017, 24, 18240–18256. [Google Scholar] [CrossRef]
Adsorbent Material | K | Ca | P | Fe | Al | Si | Ni | Cl | S | O |
---|---|---|---|---|---|---|---|---|---|---|
IS-R | 1.8 | 10.4 | 25.4 | 84.9 | 24.3 | 33.2 | 0.235 | 0.929 | 28.6 | 787.0 |
IS-KOH-B | 57.2 | 21.1 | 7.55 | 140.0 | 26.8 | 85.0 | 0.279 | 1.440 | 11.8 | 630.0 |
Model | Parameter | IS-R | IS-KOH-B |
---|---|---|---|
qe,exp (mg g−1) | 37.0 | 45.8 | |
Pseudo first order model (PFO) | k1 (min−1) | 0.011 | 0.018 |
Correlation coefficient (R2) | 0.988 | 0.892 | |
MAPE (%) | 21.5 | 37.1 | |
Pseudo second order model (PSO) | k2 (g.mg−1 min−1) | 0.00038 | 0.00248 |
qe,calc (mg g −1) | 45.7 | 47.4 | |
Correlation coefficient (R2) | 0.962 | 0.947 | |
MAPE (%) | 20.3 | 14.3 | |
Diffusion model (DM) | Df (×10−13 m2 s−1) | 1.79 | 1.31 |
Regression coefficient | 0.968 | 0.881 | |
Dip (×10−13 m2 s−1) | 5.94 | 1.60 | |
Regression coefficient | 0.987 | 0.983 |
Isotherm | Parameter | IS-R | IS-KOH-B |
---|---|---|---|
Langmuir | KL (L mg−1) | 0.26 | 0.52 |
qm (mg g−1) | 48.5 | 65.9 | |
R2 | 0.929 | 0.951 | |
MAPE (%) | 29.4 | 13.1 | |
Freundlich | n | 1.25 | 3.48 |
KF | 5.9 | 26.4 | |
R2 | 0.913 | 0.901 | |
MAPE (%) | 18.6 | 13.1 | |
D-R | qm,D-R (mg g−1) | 1911.6 | 220.1 |
E (kJ mol−1) | 9.0 | 14.9 | |
R2 | 0.920 | 0.909 | |
MAPE (%) | 14.6 | 15.0 |
Feedstock, Provenance | Pre-Treatment | Pyrolysis Conditions | Adsorption Experimental Conditions | Langmuir’s Adsorption Capacity, qm, (mg g−1) | Reference |
---|---|---|---|---|---|
Sludge form an urban WWTP, China mixed with tea wastes at a mass ratio of 1:1 | - | T = 300 °C; G = -; t = 2 h | C0 = 0–250 mg/L; pH = not adjusted; D = 10 g/L; t = 24 h; T = 25 °C | 12.6 | [61] |
Sludge form an urban WWTP, China mixed with pine sawdust at a mass ratio of 1:1 | - | T = 800 °C; G = 40 °C/min; t = 0.25 h | C0 = 20–50 mg/L; pH = -; D = 1 g/L; t = 4 h; T = 25 °C | 13.0 | [71] |
Sludge form an urban WWTP, China mixed with rice husk powder at a mass ratio of 1:1 | - | T = 500 °C; G = 7 °C/min; t = 2 h | C0 = 50–300 mg/L; pH = -; D = 1 g/L; t = 24 h; T = 25 °C | 22.6 | [62] |
Sludge form an urban WWTP, China | - | T = 550 °C; G = 10 °C/min; t = 2 h | C0 = 50–500 mg/L; pH = not adjusted; D = 6 g/L; t = 24 h; T = 25 °C | 24.1 | [66] |
Sludge from an urban WWTP, China | - | T = 200 °C; G = -; t = 2 h. Then impregnation for 4 h in 4 M HCl | C0 = 0–400 mg/L; pH = 7.0; D = 0.2 g/L; t = 24 h; T = 25 °C | 177.6 | [49] |
Demineralization | 184.9 | ||||
Textile industry sludge, Malaysia | Impregnation in H2SO4 solution for a mass ratio of 1:1 for 48 h, | T = 650 °C; G = 5 °C/min; t = 0.5 h | C0 = 10–200 mg/L; pH = -; D = 2 g/L; t = 1 h; T = 30 °C | 10.3 | [25] |
Sludge from an urban WWTP, Spain | Physical treatment with CO2, then impregnation in 3 M K2CO3 for 48 h. | T = 800 °C; G = 15° C/min; t = 0.5 h | C0 = 0–400 mg/L; pH = -; D = 1 g/L; t = 72 h; T = 20 °C | 31.2 | [26] |
Sludge form a pulp and paper mill, Zimbabwe | - | T = 750 °C; G = -; t = 2 h | C0 = 0–250 mg/L; pH = 12; D = 5 g/L; t = 45 min; T = - | 33.0 | [63] |
Impregnation with FeCl,6H2O (80%: w/v) for 2 h | 50.0 | ||||
Sludge form an urban WWTP, China | Impregnation with 5 M ZnCl2 solution for 2 h | T = 650 °C; G = 15° C/min; t = 2 h | C0 = 0–100 mg/L; pH = 6; D = 0.4 g/L; t = 0.5 h; T = 25 °C | 90.9 | [64] |
Sewage and drainage Plant, China | Impregnation with 2 M ZnCl2 solution for 12 h, | T = 750 °C; G = 9 °C/min; t = 2 h | C0 = 0–500 mg/L; pH = 7.6; D = 2 g/L; t = 36 h; T = RT | 91.9 | [24] |
Pulp and paper sludge, China | Impregnation in ZnCl2 solution for a mass ratio of 1:2 for 24 h. Then preheating at 350 °C for 30 min followed by a heating at 700 °C for 90 min. | T = 700 °C; G = -; t = 2 h | C0 = 50–1000 mg/L; pH = 8; D = 2 g/L; t = 24 h; T = RT | 590.2 | [28] |
Industrial sludge, Oman | - | - | C0 = 20–120 mg/L; pH = 6.8; D = 1 g/L; t = 3 h; T = RT | 48.5 | This study |
Impregnation with 1 M KOH for | T = 700 °C; G = 5; t = 2 h | 65.9 |
Adsorbent Material | T (K) | qe (mg g−1) | Regression Coefficient | ΔH (kJ mol−1) | ΔS (J K−1 mol−1) | ΔG (kJ mol−1) |
---|---|---|---|---|---|---|
Raw industrial sludge | 293 | 37.0 | 0.531 | 30.8 | 116.0 | −5.9 |
303 | 43.8 | −5.3 | ||||
308 | 42.1 | −5.0 | ||||
313 | 43.9 | −4.7 | ||||
Sludge derived biochar activated with KOH | 293 | 45.8 | 0.998 | 78.9 | 293.0 | −6.2 |
303 | 43.8 | −9.1 | ||||
308 | 47.8 | −10.6 | ||||
313 | 50.1 | −12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellali, S.; Azzaz, A.A.; Al-Harrasi, M.; Charabi, Y.; Al-Sabahi, J.N.; Al-Raeesi, A.; Usman, M.; Al Nasiri, N.; Al-Abri, M.; Jeguirim, M. Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. Water 2022, 14, 2206. https://doi.org/10.3390/w14142206
Jellali S, Azzaz AA, Al-Harrasi M, Charabi Y, Al-Sabahi JN, Al-Raeesi A, Usman M, Al Nasiri N, Al-Abri M, Jeguirim M. Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. Water. 2022; 14(14):2206. https://doi.org/10.3390/w14142206
Chicago/Turabian StyleJellali, Salah, Ahmed Amine Azzaz, Majida Al-Harrasi, Yassine Charabi, Jamal Nasser Al-Sabahi, Ahmed Al-Raeesi, Muhammad Usman, Noura Al Nasiri, Mohammed Al-Abri, and Mejdi Jeguirim. 2022. "Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment" Water 14, no. 14: 2206. https://doi.org/10.3390/w14142206
APA StyleJellali, S., Azzaz, A. A., Al-Harrasi, M., Charabi, Y., Al-Sabahi, J. N., Al-Raeesi, A., Usman, M., Al Nasiri, N., Al-Abri, M., & Jeguirim, M. (2022). Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. Water, 14(14), 2206. https://doi.org/10.3390/w14142206