Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Groundwater Source and Characteristics
2.2. Parent Culture Development
2.3. Microcosms Design
2.4. Chemicals and Reagents
2.5. Analytical Procedures
2.6. Data Calculation
3. Results and Discussion
3.1. Evaluation of Parent Cultures Performance
3.2. Evaluation of Cr(VI) Reduction under Complete Anaerobic Conditions
3.3. Evaluation of Cr(VI) Reduction under Anoxic Conditions
3.4. Evaluation of Cr(VI) Reduction under Different Sulfate Reducing Conditions
3.5. Comparison of Cr(VI) Reduction Rates under Different Reducing Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laxmi, V.; Kaushik, G. Toxicity of Hexavalent Chromium in Environment, Health Threats, and Its Bioremediation and Detoxification from Tannery Wastewater for Environmental Safety. In Bioremediation of Industrial Waste for Environmental Safety; Saxena, G., Bharagava, R.N., Eds.; Springer: Singapore, 2020; pp. 223–243. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Bani Mfarrej, M.F.; Alam, P.; Rinklebe, J.; Ahmad, P. Accumulation of chromium in plants and its repercussion in animals and humans. Environ. Pollut. 2022, 301, 119044. [Google Scholar] [CrossRef] [PubMed]
- EPA. National Primary Drinking Water Regulations; EPA 816-F-09-004; EPA: Washington, DC, USA, 2009.
- Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef]
- Chen, Y.G.; Sofińska-Chmiel, W.; Lv, G.Y.; Kołodyńska, D.; Chen, S.H. Application of modern research methods for the physicochemical characterization of ion exchangers. Materials 2021, 14, 7067. [Google Scholar] [CrossRef]
- Djedidi, Z.; Bouda, M.; Souissi, M.A.; Cheikh, R.B.; Mercier, G.; Tyagi, R.D.; Blais, J.F. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. J. Hazard. Mater. 2009, 172, 1372–1382. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Alharbi, N.S.; Ren, X.; Chen, C. A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. J. Environ. Chem. Eng. 2022, 10, 107325. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, C.; Du, S.; Wang, T.; Luan, Z.; Wang, J.; Hou, D. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. J. Environ. Sci. 2010, 22, 1335–1341. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Nur-E.-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 2020, 10, 205. [Google Scholar] [CrossRef]
- Hininger, I.; Benaraba, R.; Osman, M.; Faure, H.; Marie Roussel, A.; Anderson, R.A. Safety of trivalent chromium complexes: No evidence for DNA damage in human HaCaT keratinocytes. Free Radic. Biol. Med. 2007, 42, 1759–1765. [Google Scholar] [CrossRef]
- Sharma, A.; Kapoor, D.; Wang, J.; Shahzad, B.; Kumar, V.; Bali, A.S.; Jasrotia, S.; Zheng, B.; Yuan, H.; Yan, D. Chromium bioaccumulation and its impacts on plants: An overview. Plants 2020, 9, 100. [Google Scholar] [CrossRef][Green Version]
- Rahman, Z.; Thomas, L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front. Microbiol. 2021, 11, 619766. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, Q.; Hu, L.; Zhong, H.; He, Z. Bioreduction performances and mechanisms of Cr(VI) by Sporosarcina saromensis W5, a novel Cr(VI)-reducing facultative anaerobic bacteria. J. Hazard. Mater. 2021, 413, 125411. [Google Scholar] [CrossRef] [PubMed]
- Brookshaw, D.R.; Coker, V.S.; Lloyd, J.R.; Vaughan, D.J.; Pattrick, R.A.D. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite. Environ. Sci. Technol. 2014, 48, 11337–11342. [Google Scholar] [CrossRef] [PubMed]
- Faybishenko, B.; Hazen, T.C.; Long, P.E.; Brodie, E.L.; Conrad, M.E.; Hubbard, S.S.; Christensen, J.N.; Joyner, D.; Borglin, S.E.; Chakraborty, R.; et al. In situ long-term reductive bioimmobilization of Cr(VI) in groundwater using hydrogen release compound. Environ. Sci. Technol. 2008, 42, 8478–8485. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, X.; Fan, M.; Liu, L.; Chang, J.; Zhang, J. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol. Water Sci. Technol. 2019, 80, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.M.; Viñarta, S.C.; Bernal, A.R.; Cruz, E.L.; Figueroa, L.I.C. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 2018, 208, 139–148. [Google Scholar] [CrossRef]
- Song, X.; Wang, Q.; Jin, P.; Chen, X.; Tang, S.; Wei, C.; Li, K.; Ding, X.; Tang, Z.; Fu, H. Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study. Sci. Total Environ. 2021, 772, 145495. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci. Total Environ. 2020, 715, 136909. [Google Scholar] [CrossRef]
- Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef][Green Version]
- Bahadoran, Z.; Mirmiran, P.; Ghasemi, A.; Kabir, A.; Azizi, F.; Hadaegh, F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide-Biol. Chem. 2015, 47, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Middleton, S.S.; Latmani, R.B.; Mackey, M.R.; Ellisman, M.H.; Tebo, B.M.; Criddle, C.S. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol. Bioeng. 2003, 83, 627–637. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jin, R.; Wang, B.; Liu, G.; Wang, Y.; Zhou, J.; Wang, J. Bioreduction of Cr(VI) by acinetobacter sp. WB-1 during simultaneous nitrification/denitrification process. J. Chem. Technol. Biotechnol. 2017, 92, 649–656. [Google Scholar] [CrossRef]
- He, D.; Zheng, M.; Ma, T.; Li, C.; Ni, J. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. Bioresour. Technol. 2015, 185, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Sahinkaya, E.; Kilic, A. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction. Water Res. 2014, 50, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liao, R.; Zhang, X.X.; Wang, Y.; Wang, Z.; Shi, P.; Liu, B.; Li, A. Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. Water Res. 2015, 76, 43–52. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, Y.; Huang, H.; Shi, J.; Wu, K.; Zhang, P.; Lv, J.; Li, H.; He, H.; Liu, P.; et al. Simultaneous aerobic denitrification and Cr(VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. Bioresour. Technol. 2016, 221, 121–129. [Google Scholar] [CrossRef]
- Zhong, L.; Lai, C.Y.; Shi, L.D.; Wang, K.D.; Dai, Y.J.; Liu, Y.W.; Ma, F.; Rittmann, B.E.; Zheng, P.; Zhao, H.P. Nitrate effects on chromate reduction in a methane-based biofilm. Water Res. 2017, 115, 130–137. [Google Scholar] [CrossRef]
- Chang, I.S.; Kim, B.H. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere 2007, 68, 218–226. [Google Scholar] [CrossRef]
- Samborska, K.; Halas, S.; Bottrell, S.H. Sources and impact of sulphate on groundwaters of Triassic carbonate aquifers, Upper Silesia, Poland. J. Hydrol. 2013, 486, 136–150. [Google Scholar] [CrossRef]
- Torres-Martínez, J.A.; Mora, A.; Knappett, P.S.K.; Ornelas-Soto, N.; Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 2020, 182, 115962. [Google Scholar] [CrossRef] [PubMed]
- Sadeghalvad, B.; Khorshidi, N.; Azadmehr, A.; Sillanpää, M. Sorption, mechanism, and behavior of sulfate on various adsorbents: A critical review. Chemosphere 2021, 263, 128064. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Reyes, J.M.; López-Chuken, U.J.; Valdez-González, A.; Luna-Olvera, H.A. Removal of chromium and lead by a sulfate-reducing consortium using peat moss as carbon source. Bioresour. Technol. 2013, 144, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wei, L.; Liu, R.; Jiang, F.; Hao, X.; Chen, G.H. An exploratory study on the pathways of Cr (VI) reduction in sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) reactor. Sci. Rep. 2016, 6, 23694. [Google Scholar] [CrossRef][Green Version]
- Goulhen, F.; Gloter, A.; Guyot, F.; Bruschi, M. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: Microbe-metal interactions studies. Appl. Microbiol. Biotechnol. 2006, 71, 892–897. [Google Scholar] [CrossRef]
- Lv, P.L.; Zhong, L.; Dong, Q.Y.; Yang, S.L.; Shen, W.W.; Zhu, Q.S.; Lai, C.Y.; Luo, A.C.; Tang, Y.; Zhao, H.P. The effect of electron competition on chromate reduction using methane as electron donor. Environ. Sci. Pollut. Res. 2018, 25, 6609–6618. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Frei, R.; Vargemezis, G.; Vogiatzis, D.; Zouboulis, A.; Filippidis, A. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environ. Pollut. 2018, 235, 632–641. [Google Scholar] [CrossRef]
- Dermatas, D.; Panagiotakis, I.; Mpouras, T.; Tettas, K. The Origin of Hexavalent Chromium as a Critical Parameter for Remediation of Contaminated Aquifers. Bull. Environ. Contam. Toxicol. 2017, 98, 331–337. [Google Scholar] [CrossRef]
- Galani, A.; Mamais, D.; Noutsopoulos, C.; Anastopoulou, P.; Varouxaki, A. Biotic and Abiotic Biostimulation for the Reduction of Hexavalent Chromium in Contaminated Aquifers. Water 2022, 14, 89. [Google Scholar] [CrossRef]
- Tandoi, V.; DiStefano, T.D.; Bowser, P.A.; Gossett, J.M.; Zinder, S.H. Reductive Dehalogenation of Chlorinated Ethenes and Halogenated Ethanes by a High-Rate Anaerobic Enrichment Culture. Environ. Sci. Technol. 1994, 28, 973–979. [Google Scholar] [CrossRef]
- Widdel, F. Microbiology and Ecology of Sulfate-and Sulfur-Reducing Bacteria. In Biology of Anaerobic Microorganisms; Zehnder, A.J.B., Ed.; John Wiley & Sons: New York, USA, 1988; pp. 469–585. [Google Scholar]
- Balch, W.E.; Fox, G.E.; Magrum, L.J.; Woese, C.R.; Wolfe, R.S. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 1979, 43, 260–296. [Google Scholar] [CrossRef] [PubMed]
- USEPA Fate. Transport and Transformation Test Guidelines OPPTS 835.3300 Soil Biodegradation; EPA: Washington, DC, USA, 1998.
- Yang, X.; Liu, P.; Yao, M.; Sun, H.; Liu, R.; Xie, J.; Zhao, Y. Mechanism and enhancement of Cr(VI) contaminated groundwater remediation by molasses. Sci. Total Environ. 2021, 780, 146580. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lan, J.; Du, Y.; Guo, L.; Du, D.; Chen, S.; Ye, H.; Zhang, T.C. Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions. Bioresour. Technol. 2020, 302, 121974. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lan, J.; Du, Y.; Li, Z.; Liao, X.; Du, D.; Ye, H.; Zhang, T.C.; Chen, S. Efficient removal of heavy metals by synergistic actions of microorganisms and waste molasses. Bioresour. Technol. 2020, 302, 122797. [Google Scholar] [CrossRef]
- Harkness, M.; Fisher, A. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns. J. Contam. Hydrol. 2013, 151, 16–33. [Google Scholar] [CrossRef]
- Ding, L.; Song, J.; Huang, D.; Lei, J.; Li, X.; Sun, J. Simultaneous removal of nitrate and hexavalent chromium in groundwater using indigenous microorganisms enhanced by emulsified vegetable oil: Interactions and remediation threshold values. J. Hazard. Mater. 2021, 406, 124708. [Google Scholar] [CrossRef]
- Wen, C.; Sheng, H.; Ren, L.; Dong, Y.; Dong, J. Study on the removal of hexavalent chromium from contaminated groundwater using emulsified vegetable oil. Process Saf. Environ. Prot. 2017, 109, 599–608. [Google Scholar] [CrossRef]
- Kourtev, P.S.; Nakatsu, C.H.; Konopka, A. Inhibition of nitrate reduction by chromium(VI) in anaerobic soil microcosms. Appl. Environ. Microbiol. 2009, 75, 6249–6257. [Google Scholar] [CrossRef][Green Version]
- Perraki, M.; Vasileiou, E.; Bartzas, G. Tracing the origin of chromium in groundwater: Current and new perspectives. Curr. Opin. Environ. Sci. Health 2021, 22, 100267. [Google Scholar] [CrossRef]
- Panousi, E.; Mamais, D.; Noutsopoulos, C.; Antoniou, K.; Koutoula, K.; Mastrantoni, S.; Koutsogiannis, C.; Gkioni, A. Biological treatment of groundwater with a high hexavalent chromium content under anaerobic and anoxic conditions. J. Chem. Technol. Biotechnol. 2016, 91, 1681–1687. [Google Scholar] [CrossRef]
- USEPA Method 7196A for Chromium Hexavalent (colorimetric). USEPA Method 7196A; 1992; pp. 1–6. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/7196a.pdf (accessed on 20 June 2022).
- Baird, R.; Bridgewater, L. 5220 CHEMICAL OXYGEN DEMAND (COD). In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Baird, R.; Bridgewater, L. 3500-Fe IRON. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Amann, R.I.; Krumholz, L.; Stahl, D.A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 1990, 172, 762–770. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stahl, D.A.; Amann, R. Development and application of nucleic acid probes in bacterial systematics. In Nucleic Acid Techniques in Bacterial Systematics, 1st ed.; Stackebrandt, E., Goodfellow, M., Eds.; Wiley & Sons Ltd.: Chichester, UK, 1991; pp. 205–248. [Google Scholar]
- Raskin, L.; Stromley, J.M.; Rittmann, B.E.; Stahl, D.A. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 1994, 60, 1232–1240. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Küsel, K.; Pinkart, H.C.; Drake, H.L.; Devereux, R. Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl. Environ. Microbiol. 1999, 65, 5117–5123. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Holmes, D.E.; Giloteaux, L.; Barlett, M.; Chavan, M.A.; Smith, J.A.; Williams, K.H.; Wilkins, M.; Long, P.; Lovley, D.R. Molecular analysis of the In situ growth rates of subsurface geobacter species. Appl. Environ. Microbiol. 2013, 79, 1646–1653. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Manz, W.; Amann, R.; Ludwig, W.; Wagner, M.; Schleifer, K. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 1992, 15, 593–600. [Google Scholar] [CrossRef]
- Loy, A.; Lehner, A.; Lee, N.; Adamczyk, J.; Meier, H.; Ernst, J.; Schleifer, K.H.; Wagner, M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 2002, 68, 5064–5081. [Google Scholar] [CrossRef][Green Version]
- Lücker, S.; Steger, D.; Kjeldsen, K.U.; MacGregor, B.J.; Wagner, M.; Loy, A. Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. J. Microbiol. Methods 2007, 69, 523–528. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Juretschko, S.; Wagner, M.; Nielsen, P.H. Abundance and phylogenetic affiliation of iron reducers in activated sludge as assessed by fluorescence in situ hybridization and microautoradiography. Appl. Environ. Microbiol. 2002, 68, 4629–4636. [Google Scholar] [CrossRef][Green Version]
- Lin, W.H.; Chen, C.C.; Ou, J.H.; Sheu, Y.T.; Hou, D.; Kao, C.M. Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies. Chemosphere 2022, 295, 133877. [Google Scholar] [CrossRef]
- Qu, W.; Suo, L.; Liu, R.; Liu, M.; Zhao, Y.; Xia, L.; Fan, Y.; Zhang, Q.; Gao, Z. Influence of Temperature on Denitrification and Microbial Community Structure and Diversity: A Laboratory Study on Nitrate Removal from Groundwater. Water 2022, 14, 436. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Vasiliev, V.B.; Rytov, S.V.; Ponomarev, A.V. Self-oscillating coexistence of methanogens and sulfate-reducers under hydrogen sulfide inhibition and the pH-regulating effect. Bioresour. Technol. 1994, 49, 105–119. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Dar, S.A.; Kleerebezem, R.; Stams, A.J.M.; Kuenen, J.G.; Muyzer, G. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl. Microbiol. Biotechnol. 2008, 78, 1045–1055. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jeyasingh, J.; Philip, L. Bioremediation of chromium contaminated soil: Optimization of operating parameters under laboratory conditions. J. Hazard. Mater. 2005, 118, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Michailides, M.K.; Tekerlekopoulou, A.G.; Akratos, C.S.; Coles, S.; Pavlou, S.; Vayenas, D. V Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. J. Hazard. Mater. 2015, 281, 95–105. [Google Scholar] [CrossRef]
- Dong, J.; Yu, J.; Bao, Q. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: Dynamic evolution of geological parameters and groundwater microbial community. Environ. Sci. Pollut. Res. 2018, 25, 34392–34402. [Google Scholar] [CrossRef]
- Ball, J.W.; Izbicki, J.A. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl. Geochem. 2004, 19, 1123–1135. [Google Scholar] [CrossRef]
- Kumar, A.R.; Riyazuddin, P. Chromium speciation in a contaminated groundwater: Redox processes and temporal variability. Environ. Monit. Assess. 2011, 176, 647–662. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Wright, M.T.; Seymour, W.A.; McCleskey, R.B.; Fram, M.S.; Belitz, K.; Esser, B.K. Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Appl. Geochem. 2015, 63, 203–217. [Google Scholar] [CrossRef][Green Version]
- Wielinga, B.; Mizuba, M.M.; Hansel, C.M.; Fendorf, S. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ. Sci. Technol. 2001, 35, 522–527. [Google Scholar] [CrossRef]
- Fendorf, S.; Wielinga, B.W.; Hansel, C.M. Chromium Transformations in Natural Environments: The Role of Biological and Abiological Processes in Chromium(VI) Reduction. Int. Geol. Rev. 2000, 42, 691–701. [Google Scholar] [CrossRef]
- Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G.S.E. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides. J. Hazard. Mater. 2014, 264, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Génin, J.M.R.; Refait, P.H.; Abdelmoula, M. Green rusts and their relationship to iron corrosion; a key role in microbially influenced corrosion. Hyperfine Interact. 2002, 119–131. [Google Scholar] [CrossRef]
- Cundy, A.B.; Hopkinson, L.; Whitby, R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 2008, 400, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M.; Balcu, I. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater. 2011, 196, 131–138. [Google Scholar] [CrossRef]
- Borch, T.; Kretzschmar, R.; Skappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2010, 44, 15–23. [Google Scholar] [CrossRef]
- Bryce, C.; Blackwell, N.; Schmidt, C.; Otte, J.; Huang, Y.M.; Kleindienst, S.; Tomaszewski, E.; Schad, M.; Warter, V.; Peng, C.; et al. Microbial anaerobic Fe(II) oxidation—Ecology, mechanisms and environmental implications. Environ. Microbiol. 2018, 20, 3462–3483. [Google Scholar] [CrossRef][Green Version]
- Hu, Y.; Liu, T.; Chen, N.; Feng, C.; Lu, W.; Guo, H. Simultaneous bio-reduction of nitrate and Cr(VI) by mechanical milling activated corn straw. J. Hazard. Mater. 2022, 429, 128258. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, T.; Chen, N.; Feng, C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. Chemosphere 2022, 288, 132476. [Google Scholar] [CrossRef]
- He, Y.; Lin, H.; Luo, M.; Liu, J.; Dong, Y.; Li, B. Highly efficient remediation of groundwater co-contaminated with Cr(VI) and nitrate by using nano-Fe/Pd bimetal-loaded zeolite: Process product and interaction mechanism. Environ. Pollut. 2020, 263, 114479. [Google Scholar] [CrossRef]
- Margalef-Marti, R.; Carrey, R.; Benito, J.A.; Marti, V.; Soler, A.; Otero, N. Nitrate and nitrite reduction by ferrous iron minerals in polluted groundwater: Isotopic characterization of batch experiments. Chem. Geol. 2020, 548, 119691. [Google Scholar] [CrossRef]
- Smith, R.L.; Kent, D.B.; Repert, D.A.; Böhlke, J.K. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer. Geochim. Cosmochim. Acta 2017, 196, 102–120. [Google Scholar] [CrossRef]
- Zhu, I.; Getting, T. A review of nitrate reduction using inorganic materials. Environ. Technol. Rev. 2012, 1, 46–58. [Google Scholar] [CrossRef][Green Version]
- Liu, T.; Hu, Y.; Chen, N.; He, Q.; Feng, C. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification. J. Hazard. Mater. 2021, 416, 125844. [Google Scholar] [CrossRef]
- Kim, C.; Zhou, Q.; Deng, B.; Thornton, E.C.; Xu, H. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environ. Sci. Technol. 2001, 35, 2219–2225. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 7.98 |
ORP, mV | 76.50 |
EC, μS/cm | 1865.00 |
NO3-N, mg/L | 11.20 |
NO2-N, mg/L | 0.14 |
SO42−, mg/L | 51.00 |
Cl−, mg/L | 342.00 |
Cr6+, mg/L | <0.03 |
CODs *, mg/L | <15.00 |
Ca, mg/L | 68.00 |
Mg, mg/L | 155.00 |
K, mg/L | 1.40 |
Hardness, mg CaCO3/L | 805.50 |
Alkalinity, mg CaCO3/L | 382.00 |
Experimental Set | Batch Test | Cr(VI) | NO3-N | Molasses | EVO | Fe2+ |
---|---|---|---|---|---|---|
mg/L | mg/L | mg/L CODt * | mg/L CODt * | mg/L | ||
Anaerobic | ANAER-S (Sterile) | 2 | - | - | - | - |
ANAER-B (Biotic control) | - | - | - | - | ||
ANAER-M | - | 100 | - | - | ||
ANAER-M+Fe | - | 100 | - | 8 | ||
ANAER-E | - | - | 100 | - | ||
ANAER-E+Fe | - | - | 100 | 8 | ||
Anoxic | ANOX-S (Sterile) | 2 (days 0–10) 3 (days 10–60) | 10 (days 0–10) 20 (days 10–60) | - | - | - |
ANOX-B (Biotic control) | - | - | - | |||
ANOX-M | 100 | - | - | |||
ANOX-M+Fe | 100 | - | 8 | |||
ANOX-E | - | 100 | - | |||
ANOX-E+Fe | - | 100 | 8 |
Experimental Set | Batch Test | Cr(VI) | SO42− | Molasses | EVO | Fe2+ |
---|---|---|---|---|---|---|
mg/L | mg/L | mg/L CODt * | mg/L CODt * | mg/L | ||
Low sulfate concentration | S100-S (Sterile) | 2 (days 0–10) 3 (days 10–60) | 100 | - | - | - |
S100-B (Biotic control) | - | - | - | |||
S100-M | 100 | - | - | |||
S100-M+Fe | 100 | - | 8 | |||
S100-E | - | 100 | - | |||
S100-E+Fe | - | 100 | 8 | |||
High sulfate concentration | S400-S (Sterile) | 2 (days 0–10) 3 (days 10–60) | 400 | - | - | - |
S400-B (Biotic control) | - | - | - | |||
S400-M | 100 | - | - | |||
S400-M+Fe | 100 | - | 8 | |||
S400-E | - | 100 | - | |||
S400-E+Fe | - | 100 | 8 |
Parameter | Parent Culture | |||
---|---|---|---|---|
Anaerobic | Anoxic | Sulfate 100 mg/L | Sulfate 400 mg/L | |
CODs * (mg/L) | 86.8 ± 20.1 | 48.0 ± 8.3 | 57.3 ± 18.1 | 49.3 ± 16.5 |
VFAs (mg CODs/L) | 27.5 ± 8.3 | 13.1 ± 5.0 | 11.2 ± 2.0 | 9.9 ± 0.9 |
pH | 8.28 ± 0.16 | 8.30 ± 0.13 | 8.23 ± 0.12 | 8.15 ± 0.22 |
Cr(VI) (μg/L) | ND | ND | ND | ND |
NO3-N (mg/L) | - | <0.23 | - | - |
NO2-N (mg/L) | - | <0.01 | - | - |
remaining SO42− (mg/L) | - | - | 58.6 ± 45.3 | 280.0 ± 58.0 |
S2− (mg/L) | - | - | 3.1 ± 2.1 | 13.2 ± 7.1 |
Experimental Set | Sulfide Concentration (mg/L) | ||
---|---|---|---|
0–10 Days | 10–20 Days | 20–60 Days | |
S100-B | 4.6 ± 0.0 | 3.1 ± 0.1 | 1.6 ± 1.1 |
S100-M | 7.1 ± 0.2 | 4.3 ± 0.8 | 3.7 ± 0.8 |
S100-E | 7.5 ± 0.5 | 3.1 ± 1.5 | 3.0 ± 1.1 |
S100-M+Fe | 7.1 ± 0.6 | 5.4 ± 1.4 | 3.2 ± 1.6 |
S100-E+Fe | 9.1 ± 1.2 | 5.8 ± 0.8 | 3.3 ± 2.2 |
S400-B | 2.1 ± 0.1 | 1.7 ± 0.6 | 1.0 ± 0.5 |
S400-M | 19.0 ± 1.8 | 6.9 ± 3.9 | 2.3 ± 1.0 |
S400-E | 12.2 ± 2.8 | 7.0 ± 5.1 | 1.9 ± 1.0 |
S400-M+Fe | 16.2 ± 5.3 | 3.6 ± 2.8 | 2.0 ± 0.7 |
S400-E+Fe | 13.3 ± 2.6 | 5.3 ± 0.5 | 3.9 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galani, A.; Noutsopoulos, C.; Anastopoulou, P.; Varouxaki, A.; Mamais, D. Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. Water 2022, 14, 2179. https://doi.org/10.3390/w14142179
Galani A, Noutsopoulos C, Anastopoulou P, Varouxaki A, Mamais D. Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. Water. 2022; 14(14):2179. https://doi.org/10.3390/w14142179
Chicago/Turabian StyleGalani, Andriani, Constantinos Noutsopoulos, Petra Anastopoulou, Alexia Varouxaki, and Daniel Mamais. 2022. "Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study" Water 14, no. 14: 2179. https://doi.org/10.3390/w14142179