Climate Change Impacts on Stream Water Temperatures in a Snowy Cold Region According to Geological Conditions
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Observation Data
Watershed (Location) | Major Constituent Geology | Watershed Area (km2) | Observation Data of Discharge and Water Temperature | Calculation Method or Source |
---|---|---|---|---|
Watershed 1 | Quaternary pyroclastic flow deposits (Tokachi pyroclastic flow deposits) | 21.9 | From 13 March 2018 to 30 September 2019 | Stream discharge: After measuring the water level with a data logger, convert it to discharge using Manning’s formula. Water temperature: measured with a data logger |
Watershed 4 | Quaternary pyroclastic flow deposits (Tokachi pyroclastic flow deposits) | 16.4 | From 13 March 2018 to 30 September 2019 | Stream discharge: After measuring the water level with a data logger, convert it to discharge using Manning’s formula. Water temperature: measured with a data logger |
Watershed 101 | Mesozoic rocks (Hornfels, bright green tuff, gneiss) | 17.1 | From 13 March 2018 to 30 September 2019 Treat as missing data from 13 March 2018 to 30 June 2018 | Stream discharge: After measuring the water level with a data logger, convert it to discharge using Manning’s formula. Water temperature: measured with a data logger |
Watershed 103 | Mesozoic rocks (Hornfels, bright green tuff, gneiss) | 20.4 | From 13 March 2018 to 30 September 2019 | Stream discharge: After measuring the water level with a data logger, convert it to discharge using Manning’s formula. Water temperature: measured with a data logger |
Kanayama Dam | Quaternary pyroclastic flow deposits and Mesozoic rocks | 470 | From 13 March 2018 to 30 September 2019 (Stream discharge only) | Published by the Ministry of Land, Infrastructure, Transport, and Tourism [26] |
Taihei bridge | Quaternary pyroclastic flow deposits and Mesozoic rocks | 381 | 13 measurement data (Water temperature only) | Published by the Ministry of Land, Infrastructure, Transport, and Tourism [26] |
Watershed | i | n |
---|---|---|
Watershed 1 | 0.0170 | 0.166 |
Watershed 4 | 0.0108 | 0.128 |
Watershed 101 | 0.0246 | 0.070 |
Watershed 103 | 0.0179 | 0.083 |
2.3. Meteorological Data and Climate Scenario
Meteorological Factors | Units | Data Used, Spatial and Temporal Resolution |
---|---|---|
Precipitation | mm | Radar rain gauge analyzed precipitation by Japan Meteorological Agency (JMA) 1 km, hourly |
Air temperature | K | Local forecast model (LFM) data by JMA, 5 km, hourly |
Wind speed | m/s | Local forecast model (LFM) data by JMA, 5 km, hourly |
Relative humidity | % | Local forecast model (LFM) data by JMA, 5 km, hourly |
Amount of snowfall | mm | The model value by the Japan Weather Association SYNFOS-3D, 5 km, every 3 h |
Total cloud cover | % | The model value by JMA SYNFOS-3D, corrected by the relational expression between the model value and the observed value at the Asahikawa Local Meteorological Observatory, 5 km, every 3 h |
Lower cloud cover | % | The model value by JMA SYNFOS-3D, corrected by the same relational expression as the correction of the total cloud cover, 5 km, every 3 h |
Elements | Units | Original Source of Data |
---|---|---|
Precipitation | mm | 1 km mesh daily data from Ueda [28] Spatially detailed climate change projection data based on MRI-NHRCM20 (JMA) [29], after RCP 8.5 (IPCC) emission scenarios Bias correction based on DSJRA-55 and mesh climate data of 30-year average by JMA |
Air temperature | K | |
Wind speed | m/s | |
Relative humidity | % | |
Amount of snowfall | mm | |
Total cloud cover | % | |
Lower cloud cover | % |
2.4. Atmospheric and Land Surface Process Model Considering Snow Cover Change
2.5. Runoff Model
2.6. Water Temperature Estimation Model
3. Results
3.1. Reproduction of the Water Circulation
3.2. Reproduction of the Water Temperature
3.3. Simulated Future Water Temperature
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michel, A.; Brauchli, T.; Lehning, M.; Schaefli, B.; Huwald, H. Stream temperature and discharge evolution in Switzerland over the last 50 years: Annual and seasonal behaviour. Hydrol. Earth Syst. Sci. 2020, 24, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.W.; Nobilis, F. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J. 2007, 52, 74–85. [Google Scholar] [CrossRef]
- Orr, H.G.; Simpson, G.L.; des Clers, S.; Watts, G.; Hughes, M.; Hannaford, J.; Dunbar, M.J.; Laizé, C.L.R.; Wilby, R.L.; Battarbee, R.W.; et al. Detecting changing river temperatures in England and Wales. Hydrol. Process. 2015, 29, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Chang. 2012, 113, 499–524. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Tian, H.; Kalin, L.; Pan, S.; Friedrichs, M.A.M.; Wang, J.; Li, Y. Contrasting stream water temperature responses to global change in the Mid-Atlantic Region of the United States: A process-based modeling study. J. Hydrol. 2021, 601, 126633. [Google Scholar] [CrossRef]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Change 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Kudo, K.; Nakatsugawa, M.; Chida, Y. Research on evaluation of the water temperature change in snowy cold river based on global warming scenarios. J. Jpn. Soc. Civ. Ser. B1 2018, 74, I_37–I_42. [Google Scholar] [CrossRef]
- Michel, A.; Schaefli, B.; Wever, N.; Zekollari, H.; Lehning, M.; Huwald, H. Future water temperature of rivers in Switzerland under climate change investigated with physics-based models. Hydrol. Earth Syst. Sci. 2022, 26, 1063–1087. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Barnhart, B.L.; Knouft, J.H.; Stewart, I.T.; Maurer, E.P.; Letsinger, S.L.; Whittaker, G.W. Climate change and stream temperature projections in the Columbia River basin: Habitat implications of spatial variation in hydrologic drivers. Hydrol. Earth Syst. Sci. 2014, 18, 4897–4912. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Fullerton, A.H.; Sun, N.; Torgersen, C.E. Projecting spatiotemporally explicit effects of climate change on stream temperature: A model comparison and implications for coldwater fishes. J. Hydrol. 2020, 588, 125066. [Google Scholar] [CrossRef]
- Leach, J.A.; Moore, R.D. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: Influences of hillslope runoff and transient snow cover. Hydrol. Earth Syst. Sci. 2014, 18, 819–838. [Google Scholar] [CrossRef] [Green Version]
- Ducharne, A. Importance of stream temperature to climate change impact on water quality. Hydrol. Earth Syst. Sci. 2008, 12, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Förster, H.; Lilliestam, J. Modeling thermoelectric power generation in view of climate change. Reg. Environ. Change 2009, 10, 327–338. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Steel, E.A.; Ebersole, J.L.; Lee, S.Y. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquat. Sci. 2018, 80, 3. [Google Scholar] [CrossRef]
- Isaak, D.J.; Young, M.K.; Nagel, D.E.; Horan, D.L.; Groce, M.C. The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 2015, 21, 2540–2553. [Google Scholar] [CrossRef]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Tague, C.; Farrell, M.; Grant, G.; Lewis, S.; Rey, S. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrol. Process. 2007, 21, 3288–3300. [Google Scholar] [CrossRef]
- Nagasaka, A.; Sugiyama, S. Factors affecting the summer maximum stream temperature of small streams in northern Japan. Bull. Hokkaido For. Res. Inst. 2010, 47, 35–43. [Google Scholar]
- Ishiyama, N.; Sueyoshi, M.; Molinos, J.G.; Iwasaki, K.; Negishi, J.N.; Koizumi, I.; Nagayama, S.; Nakamura, F. The role of geology in creating stream climate-change refugia along climate gradients. bioRxiv 2022. bioRxiv:2022.2005.2002.490355. [Google Scholar] [CrossRef]
- Leach, J.A.; Moore, R.D. Empirical stream thermal sensitivities may underestimate stream temperature response to climate warming. Water Resour. Res. 2019, 55, 5453–5467. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, Transport and Tourism Hokkaido Development Bureau. River Maintenance Plan of Sorachi River, Ishikari River System (Modified Version); Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2018.
- The Geological Survey of Hokkaido, Industrial Promotion Department of Kamikawa Branch Office. Geology and Underground Resources of Kamikawa Branch Office, Ⅰ Southern Part of Kamikawa Region; Geological Survey of Hokkaido: Sapporo, Japan, 2008; p. 45. [Google Scholar]
- Sapporo Regional Headquarters, Japan Meteorological Agency. Climatic Change in Hokkaido, 2nd ed.; Sapporo Regional Headquarters, Japan Meteorological Agency: Sapporo, Japan, 2017.
- Usutani, T.; Nakastugawa, M.; Matsuoka, N. Generalization of model parameters for evaluating basin-scale soil moisture content. J. Jpn. Soc. Civ. Ser. B1 2014, 70, I_355–I_360. [Google Scholar] [CrossRef] [Green Version]
- Musiake, K.; Takahasi, Y.; Ando, Y. Effects of basin geology on river-flow regime in mountainous areas of Japan. Nat. Commun. 1981, 1981, 51–62. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, Transport and Tourism. Water Information System. Available online: http://www1.river.go.jp/ (accessed on 10 February 2022).
- Japan Meteorological Agency. Historical Weather Data Search. Available online: http://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 10 February 2022).
- Ueda, S.; Nakatsugawa, M.; Usutani, T. Estimation of high-resolution downscaled climate information based on verification of water balance in watershed of Hokkaido. J. Jpn. Soc. Civ. Ser. B1 2020, 76, I_25–I_30. [Google Scholar] [CrossRef]
- Sasaki, H.; Murata, A.; Kawase, H.; Hanafusa, M.; Nosaka, M.; Oh’izumi, M.; Mizuta, R.; Aoyagi, T.; Shido, F.; Ishihara, K. Projection of future climate change around Japan by using MRI non-hydrostatic regional climate model. Tech. Rep. Meteorol. Res. Inst. 2015, 73, 1–90. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Mizuta, R.; Arakawa, O.; Ose, T.; Kusunoki, S.; Endo, H.; Kitoh, A. Classification of CMIP5 future climate responses by the tropical sea surface temperature changes. SOLA 2014, 10, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Ueda, S.; Nakatsugawa, M.; Chida, Y.; Komatsu, A. Production of downscaled data for Hokkaido which basin water balance has been verified. J. Jpn. Soc. Civ. Ser. B1 2019, 75, I_1051–I_1056. [Google Scholar] [CrossRef]
- Usutani, T.; Nakatusgawa, M.; Kudo, K. Quantitative analysis of hydrologic process in the Ishikari river catchment area. J. Jpn. Soc. Civ. Ser. B1 2005, 49, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Kondo, J. Meteorology of Water Environment; Asakura Publishing: Tokyo, Japan, 1994. [Google Scholar]
- Kuchizawa, H.; Nakatsugawa, M. Estimations of snow pack condition and evapotranspiration based on water and heat balances in watersheds. Mon. Rep. Civ. Eng. Res. Inst. Hokkaido 2002, 588, 19–38. [Google Scholar]
- Nakatsugawa, M.; Hamahara, Y.; Hoshi, K. Long-term runoff calculation considering change of snow pack condition. J. Hydrosci. Hydraul. Eng. 2004, 22, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Foundation of Hokkaido River Disaster Prevention Research Center. Ishikari River Basin Landscape Information; Foundation of Hokkaido River Disaster Prevention Research Center: Sapporo, Japan, 1998. [Google Scholar]
- Sugawara, M. Automatic calibration of the tank model. Hydrol. Sci. Bull. 1979, 24, 375–388. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Tanakamaru, H. Parameter estimation for the tank model using global optimization. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 1995, 1995, 503–512. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T., Jr. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications; USGS Professional Paper, 252; US Government Printing Office: Washington, DC, USA, 1953; p. 57.
- Arai, T.; Nishizawa, T. Water Temperature; Kyoritu Publishing Company: Tokyo, Japan, 1974; Volume 10. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Google Earth. Available online: https://www.google.co.jp/intl/ja/earth/ (accessed on 14 December 2021).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Arai, T. Climate change and variations in the water temperature and ice cover of inland waters. Jpn. J. Limnnol. 2009, 70, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed groundwater temperature response to recent climate change. Hydrol. Earth Syst. Sci. 2014, 18, 4453–4466. [Google Scholar] [CrossRef] [Green Version]
- Figura, S.; Livingstone, D.M.; Hoehn, E.; Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 2011, 38, L23401. [Google Scholar] [CrossRef] [Green Version]
- Hemmerle, H.; Bayer, P. Climate change yields groundwater warming in Bavaria, Germany. Front. Earth Sci. 2020, 8, 523. [Google Scholar] [CrossRef]
- Burns, E.R.; Zhu, Y.; Zhan, H.; Manga, M.; Williams, C.F.; Ingebritsen, S.E.; Dunham, J.B. Thermal effect of climate change on groundwater-fed ecosystems. Water Resour. Res. 2017, 53, 3341–3351. [Google Scholar] [CrossRef]
- Matsuyama, H.; Miyano, H. Diagnostic study on warming mechanism of spring water temperature based on field observations and numerical simulation: A case study of Masugatanoike spring, Tokyo, Japan. Hydrol. Res. Lett. 2011, 5, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, T.; Taguchi, B.; Kondo, J. Estimation of the heat balance in a small snow-covered forested catchment basin. Tenki 1994, 41, 71–77. [Google Scholar]
- Ishii, T.; Nashimoto, M.; Shimogaki, H. Estimation of leaf area index using remote sensing data. J. Jpn. Soc. Hydrol. Water Res. 1999, 12, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Tokuda, D.; Yamazaki, D.; Oki, T. Study of the role of inundation on river water temperature with a numerical model. J. Jpn. Soc. Civ. Ser. B1 2017, 73, I_1213–I_1218. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.; Gitau, M.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, S.; Sueyoshi, M.; Hirota, S.K.; Ishiyama, N.; Matsuo, A.; Suyama, Y.; Nakamura, F. A strategic sampling design revealed the local genetic structure of cold-water fluvial sculpin: A focus on groundwater-dependent water temperature heterogeneity. Heredity 2021, 127, 413–422. [Google Scholar] [CrossRef]
Geology | p2 | p3 |
---|---|---|
Pyroclastic flow deposits | 0.50 | 0.40 |
Mesozoic rocks | 0.70 | 0.60 |
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LAI | 1.5 | 1.5 | 1.5 | 1.5 | 2.3 | 4.8 | 6.0 | 5.3 | 5.1 | 4.2 | 2.2 | 1.5 |
fv | 0.48 | 0.48 | 0.48 | 0.48 | 0.32 | 0.09 | 0.05 | 0.07 | 0.08 | 0.12 | 0.34 | 0.48 |
a11 | a12 | a21 | a31 | a41 | b1 | b2 | b3 | b4 | z11 | z12 | z21 | z31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Watershed 1 | 0.171 | 0.068 | 0.038 | 0.003 | 0.0006 | 0.607 | 0.252 | 0.0390 | 0.0011 | 96.1 | 60.4 | 18.8 | 3.0 |
Watershed 4 | 0.175 | 0.070 | 0.057 | 0.005 | 0.0003 | 0.523 | 0.252 | 0.0210 | 0.0011 | 89.7 | 52.2 | 10.8 | 1.9 |
Watershed 101 | 0.258 | 0.116 | 0.060 | 0.025 | 0.0040 | 0.188 | 0.068 | 0.0003 | - | 103.8 | 39.3 | 26.3 | 29.4 |
Watershed 103 | 0.342 | 0.135 | 0.075 | 0.012 | 0.0025 | 0.607 | 0.068 | 0.0005 | - | 86.2 | 25.8 | 16.3 | 29.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, H.; Nakatsugawa, M.; Ishiyama, N. Climate Change Impacts on Stream Water Temperatures in a Snowy Cold Region According to Geological Conditions. Water 2022, 14, 2166. https://doi.org/10.3390/w14142166
Suzuki H, Nakatsugawa M, Ishiyama N. Climate Change Impacts on Stream Water Temperatures in a Snowy Cold Region According to Geological Conditions. Water. 2022; 14(14):2166. https://doi.org/10.3390/w14142166
Chicago/Turabian StyleSuzuki, Hiroaki, Makoto Nakatsugawa, and Nobuo Ishiyama. 2022. "Climate Change Impacts on Stream Water Temperatures in a Snowy Cold Region According to Geological Conditions" Water 14, no. 14: 2166. https://doi.org/10.3390/w14142166
APA StyleSuzuki, H., Nakatsugawa, M., & Ishiyama, N. (2022). Climate Change Impacts on Stream Water Temperatures in a Snowy Cold Region According to Geological Conditions. Water, 14(14), 2166. https://doi.org/10.3390/w14142166