# Prediction for the Settlement of Concrete Face Rockfill Dams Using Optimized LSTM Model via Correlated Monitoring Data

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Interpretation Model for the Settlement of CFRD

## 3. LSTM-CS MMP Prediction Model for the Settlement of CFRD

#### 3.1. Data Clustering Based on K-Means++ Algorithm

#### 3.2. CS Algorithm Optimized LSTM

#### 3.2.1. Long Short-Term Memory Structure

#### 3.2.2. Cuckoo Search Algorithm

## 4. Project Overview

## 5. Results and Discussion

#### 5.1. Clustering Results of Monitoring Data Series

#### 5.2. Optimization of Parameters in LSTM

#### 5.3. Fitting and Prediction Results

#### 5.3.1. Selection of the Input Variables in the Model

#### 5.3.2. Fitting and Prediction Performance of M–LSTM Model

#### 5.3.3. Comparison between Different Models

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A. Fitting and Predicting Results

**Figure A1.**Fitting and prediction results of M–LSTM model based on the training datasets in Cluster 1 (LD1-2 in red lines and LD3-5 in green lines).

**Figure A2.**Fitting and prediction results of M–LSTM model based on the training datasets in Cluster 2 (LD2-2 in red, LD3-3 in green, LD5-4 in blue, and LD6-3 in purple lines, respectively).

**Figure A3.**Fitting and prediction results of M–LSTM model based on the training datasets in Cluster 3 (LD2-3 in red, LD3-4 in green, LD5-5 in blue, and LD6-4 in purple lines, respectively).

**Figure A4.**Fitting and prediction results of M–LSTM model based on the training datasets in Cluster 4 (LD3-2, LD4-2, LD4-3, LD5-2, LD5-3, and LD6-2).

## References

- Xu, B.; Zou, D.; Liu, H. Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model. Comput. Geotech.
**2012**, 43, 143–154. [Google Scholar] [CrossRef] - Wen, L.; Chai, J.Z.; Qin, Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories. Geotechnique
**2018**, 68, 749–771. [Google Scholar] [CrossRef] - Yuan, D.; Wei, B.; Xie, B.; Zhong, Z. Modified dam deformation monitoring model considering periodic component contained in residual sequence. Struct. Control Health Monit.
**2020**, 27, e2633. [Google Scholar] [CrossRef] - Yuan, D.; Gu, C.; Qin, X.; Shao, C.; He, J. Performance-improved TSVR-based DHM model of super high arch dams using measured air temperature. Eng. Struct.
**2022**, 250, 113400. [Google Scholar] [CrossRef] - Ma, H.; Chi, F. Technical Progress on Researches for the Safety of High Concrete-Faced Rockfill Dams. In Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 332–339. [Google Scholar]
- Behnia, D.; Ahangari, K.; Noorzad, A.; Moeinossadat, S.R. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods. J. Zhejiang Univ.–Sci. A Appl. Phys. Eng.
**2013**, 14, 58–71. [Google Scholar] [CrossRef][Green Version] - Leger, P.; Leclerc, M. Hydrostatic, Temperature, Time-Displacement Model for Concrete Dams. J. Eng. Mech.
**2007**, 133, 267–277. [Google Scholar] [CrossRef] - Mata, J.; Castro, A.T.D.; Costa, J.S.D. Constructing statistical models for arch dam deformation. Struct. Control Health Monit.
**2014**, 21, 423–437. [Google Scholar] [CrossRef][Green Version] - Leger, P.; Cote, P.; Tinawi, R. Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams. Comput. Struct.
**1996**, 60, 601–611. [Google Scholar] [CrossRef] - Hu, Y.; Gu, C.; Meng, Z.; Shao, C. Improve the Model Stability of Dam’s Displacement Prediction Using a Numerical-Statistical Combined Model. IEEE Access.
**2020**, 8, 147482–147493. [Google Scholar] [CrossRef] - Sun, P.M.; Bao, T.F.; Gu, C.S.; Jiang, M.; Wang, T.; Shi, Z.W. Parameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithm. Sci. China (Technol. Sci.)
**2016**, 59, 1442. [Google Scholar] [CrossRef] - Meng, Z.; Hu, Y.; Ancey, C. Using a Data Driven Approach to Predict Waves Generated by Gravity Driven Mass Flows. Water
**2020**, 12, 600. [Google Scholar] [CrossRef][Green Version] - Hariri-Ardebili, M.A.; Pourkamali-Anaraki, F. Support vector machine based reliability analysis of concrete dams. Soil Dyn. Earthq. Eng.
**2018**, 104, 276–295. [Google Scholar] [CrossRef] - Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process.
**2018**, 110, 412–427. [Google Scholar] [CrossRef] - Tabari, M.; Sanayei, H. Prediction of the intermediate block displacement of the dam crest using artificial neural network and support vector regression models. In Soft Computing—A Fusion of Foundations, Methodologies and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Salazar, F.; Moran, R.; Toledo, M.A.; Onate, E. Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations. Arch. Comput. Methods Eng.
**2017**, 24, 1–21. [Google Scholar] [CrossRef][Green Version] - Wang, S.; Xu, C.; Liu, Y.; Wu, B. A spatial association-coupled double objective support vector machine prediction model for diagnosing the deformation behaviour of high arch dams. Struct. Health Monit.
**2021**, 21, 14759217211017030. [Google Scholar] [CrossRef] - Hu, Y.; Shao, C.; Gu, C.; Meng, Z. Concrete Dam Displacement Prediction Based on an ISODATA-GMM Clustering and Random Coefficient Model. Water
**2019**, 11, 714. [Google Scholar] [CrossRef][Green Version] - Adnan, R.M.; Khosravinia, P.; Karimi, B.; Kisi, O. Prediction of hydraulics performance in drain envelopes using Kmeans based multivariate adaptive regression spline. Appl. Soft Comput.
**2020**, 100, 107008. [Google Scholar] [CrossRef] - Khaledian, E.; Pandey, S.; Kundu, P.; Srivastava, A.K. Real-Time Synchrophasor Data Anomaly Detection and Classification Using Isolation Forest, KMeans, and LoOP. IEEE Trans. Smart Grid
**2020**, 12, 1949–3053. [Google Scholar] [CrossRef] - Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput.
**1997**, 9, 1735–1780. [Google Scholar] [CrossRef] - Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl.
**2019**, 31, 2727–2740. [Google Scholar] [CrossRef] - Altan, A.; Karasu, S.; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl. Soft Comput.
**2021**, 100, 106996. [Google Scholar] [CrossRef] - Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process.
**1997**, 45, 2673–2681. [Google Scholar] [CrossRef][Green Version] - Min, H.; Xi, J.; Xu, S.; Yin, F.L. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process.
**2004**, 52, 3409–3416. [Google Scholar] - Yang, X.S.; Deb, S. Cuckoo Search via Levy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009. [Google Scholar]
- Singh, H.; Kommuri, S.; Kumar, A.; Bajaj, V. A new technique for Guided Filter based Image Denoising using Modified Cuckoo Search Optimization. Expert Syst. Appl.
**2021**, 176, 114884. [Google Scholar] [CrossRef] - Haifanga, L.; Yinqi, Z. Creep rate and creep model of rockfill. Procedia Eng.
**2012**, 28, 796–802. [Google Scholar] [CrossRef][Green Version] - Janbu, N. Soil models in offshore engineering. Géotechnique
**1985**, 35, 241–281. [Google Scholar] [CrossRef] - Oyen, M.L.; Cook, R.F. Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res.
**2003**, 18, 139–150. [Google Scholar] [CrossRef] - Sigtryggsdóttir, F.G.; Snæbjörnsson, J.T.; Grande, L. Statistical model for dam-settlement prediction and structural-health assessment. J. Geotech. Geoenviron. Eng.
**2018**, 144, 04018059. [Google Scholar] [CrossRef]

**Figure 1.**Schematic diagram of the CFRD and the main components of the settlements: (

**a**) sketch of the CFRD, (

**b**) structure of the main body of the CFRD, (

**c**) creep deformation component, (

**d**) consolidation of soil particles, (

**e**) hydrostatic load component, (

**f**) frost heave of soil particles.

**Figure 3.**Schematics for typical searching process of Lévy flights and random walk in 2000 iterations.

**Figure 5.**Schematic of: (

**a**) location, (

**b**) structure, (

**c**) distribution of monitoring points of settlement, of the CFRD for Langyashan PSPS.

**Figure 7.**Ambient data series of Langyashan dam: (

**a**) upstream water level, (

**b**) environmental temperature.

**Figure 15.**Results of: (

**a**) AMSE of M–LSTM, LSTM, BPNN, and HST models under different prediction lengths, (

**b**) ASMAPE of M–LSTM, LSTM, BPNN, and HST models under different prediction lengths, (

**c**) AMAPE of M–LSTM, LSTM, BPNN, and HST models under different prediction lengths.

**Table 1.**Upper bound and lower bound of the parameters set in the CS algorithm, and the results of optimized parameters of the NN structure in LSTM model.

Hidden Layers | Hidden Nodes | Learning Rate | |
---|---|---|---|

Upper bound | 10 | 20 | $1\times {10}^{-1}$ |

Lower bound | 1 | 1 | $1\times {10}^{-5}$ |

Optimized parameters | 2 | 7 | $3\times {10}^{-2}$ |

Monitoring Point | M–LSTM | LSTM | BPNN | HST |
---|---|---|---|---|

LD1-2 | 0.843 | 0.985 | 0.754 | 0.576 |

LD2-2 | 0.987 | 0.807 | 0.971 | 0.918 |

LD2-3 | 0.907 | 0.989 | 0.873 | 0.665 |

LD3-2 | 0.995 | 0.926 | 0.991 | 0.951 |

LD3-3 | 0.991 | 0.93 | 0.905 | 0.937 |

LD3-4 | 0.919 | 0.541 | 0.829 | 0.745 |

LD3-5 | 0.799 | 0.991 | 0.753 | 0.409 |

LD4-2 | 0.995 | 0.983 | 0.994 | 0.962 |

LD4-3 | 0.994 | 0.991 | 0.99 | 0.96 |

LD5-2 | 0.995 | 0.985 | 0.987 | 0.961 |

LD5-3 | 0.993 | 0.95 | 0.761 | 0.946 |

LD5-4 | 0.974 | 0.781 | 0.947 | 0.87 |

LD5-5 | 0.88 | 0.99 | 0.867 | 0.635 |

LD6-2 | 0.993 | 0.974 | 0.988 | 0.941 |

LD6-3 | 0.981 | 0.779 | 0.917 | 0.865 |

LD6-4 | 0.87 | 0.754 | 0.793 | 0.579 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hu, Y.; Gu, C.; Meng, Z.; Shao, C.; Min, Z.
Prediction for the Settlement of Concrete Face Rockfill Dams Using Optimized LSTM Model via Correlated Monitoring Data. *Water* **2022**, *14*, 2157.
https://doi.org/10.3390/w14142157

**AMA Style**

Hu Y, Gu C, Meng Z, Shao C, Min Z.
Prediction for the Settlement of Concrete Face Rockfill Dams Using Optimized LSTM Model via Correlated Monitoring Data. *Water*. 2022; 14(14):2157.
https://doi.org/10.3390/w14142157

**Chicago/Turabian Style**

Hu, Yating, Chongshi Gu, Zhenzhu Meng, Chenfei Shao, and Zhongze Min.
2022. "Prediction for the Settlement of Concrete Face Rockfill Dams Using Optimized LSTM Model via Correlated Monitoring Data" *Water* 14, no. 14: 2157.
https://doi.org/10.3390/w14142157