Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements and Calculations
2.4. Water Consumption
2.5. Selection of Models
3. Results
3.1. Effect of Different Fertility Deficit Regulation Treatments on Water Consumption in Potato
3.2. Effect of Different Fertility Loss-Adjustment Treatments on Potato Yield
3.3. Relationship between Water Consumption and Impact on Yield under Different Fertility Deficit Regulation Treatments
3.4. Moisture Production Function Model Solving
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howell, T.A.; Hiler, E.A. Optimization of water use efficiency under high frequency irrigation—I. Evapotranspiration and yield relationship. Trans. ASAE 1975, 18, 873–0878. [Google Scholar] [CrossRef]
- Kang, S.; Cai, H. Agricultural Water Management Science; China Agriculture Press: Beijing, China, 1996; p. 277. [Google Scholar]
- Stewart, J.I.; Hagan, R.M.; Pruitt, W.O.; Danielson, R.E.; Franklin, W.T.; Hanks, R.J.; Riley, J.P.; Jackson, E.B. Optimizing crop production through control of water and salinity levels in the soil. Reports 1977, 67, USU Library: Logan, UT, USA. [Google Scholar]
- Rajput, G.S.; Singh, J. Water production functions for wheat under different environmental conditions. Agric. Water Manag. 1986, 11, 319–332. [Google Scholar] [CrossRef]
- Jensen, M.E. Water Consumption by Agricultural Plants (Chapter 1); Academic Press: New York, NY, USA, 1968; pp. 1–22. [Google Scholar]
- Rao, N.H.; Sarma, P.B.S.; Chander, S. A simple dated water-production function for use in irrigated agriculture. Agric. Water Manag. 1988, 13, 25–32. [Google Scholar] [CrossRef]
- Minhas, B.S.; Parikh, K.S.; Srinivasan, T.N. Toward the structure of a production function for wheat yields with dated inputs of irrigation water. Water Resour. Res. 1974, 10, 383–393. [Google Scholar] [CrossRef]
- Hanks, R.J. Model for predicting plant yield as influenced by water use. Agron. J. 1974, 66, 660–665. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; King, B.A.; Bjorneberg, D.L. Maize grain yield and crop water productivity functions in the arid Northwest US. Agric. Water Manag. 2022, 264, 107513. [Google Scholar] [CrossRef]
- Datta, D.; Chandra, S.; Nath, C.P.; Kar, G.; Ghosh, S.; Chaturvedi, S.; Bhatnagar, A.; Singh, G.; Singh, V. Soil-plant water dynamics, yield, quality and profitability of spring sweet corn under variable irrigation scheduling, crop establishment and moisture conservation practices. Field Crops Res. 2022, 279, 108450. [Google Scholar] [CrossRef]
- Tarkalson, D.D.; King, B.A.; Bjorneberg, D.L. Yield production functions of irrigated sugarbeet in an arid climate. Agric. Water Manag. 2018, 200, 1–9. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.-M. Identifying Irrigation Strategies for Improved Agricultural Water Productivity in Irrigated Maize Production through Crop Simulation Modelling. Sustainability 2017, 9, 630. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Paredes, P.; Jovanovic, N. Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric. Water Manag. 2020, 241, 106357. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Sarojini Amma, S.; George, J.; Rajan, S.; Gangadharan, B. Development of optimal irrigation schedules and crop water production function for cassava: Study over three major growing areas in India. Irrig. Sci. 2020, 38, 251–261. [Google Scholar] [CrossRef]
- Al-Jamal, M.S.; Sammis, T.W.; Ball, S.; Smeal, D. Computing the crop water production function for onion. Agric. Water Manag. 2000, 46, 29–41. [Google Scholar] [CrossRef]
- Haghverdi, A.; Ghahraman, B.; Leib, B.G.; Pulido-Calvo, I.; Kafi, M.; Davary, K.; Ashorun, B. Deriving data mining and regression based water-salinity production functions for spring wheat (Triticum aestivum). Comput. Electron. Agric. 2014, 101, 68–75. [Google Scholar] [CrossRef]
- Kang, X.; Li, C.; Ma, H.; Le, Z. Study on drought evaluation model of winter wheat based on crop water production funcation. Chin. Agric. Sci. Bull. 2011, 27, 274–279. [Google Scholar]
- He, X.; Wang, Z.; Wei, C.; Lyu, D. Water production function of cotton transplanted without film under subsurface drip irrigation in Xinjiang. J. Irrig. Drain. 2011, 30, 132–134. [Google Scholar] [CrossRef]
- Shi, R.; Tong, L.; Du, T.; Shukla, M.K. Response and Modeling of Hybrid Maize Seed Vigor to Water Deficit at Different Growth Stages. Water 2020, 12, 3289. [Google Scholar] [CrossRef]
- Tao, Y.; Zheng, W. Application of Minitab software onbuilding and evaluation of water production function models of sybean. Hydrol. Sci. Cold. Zone. Eng. 2018, 1, 1–4. [Google Scholar]
- He, J.; Tian, J.; Ma, B.; Shen, H. Water production function of paddy rice in Aerobic soil with drip irrigation under plastic film. Acta Agric. Boreali-Occident. Sin. 2015, 24, 41–48. [Google Scholar]
- Du, Z.; Wang, X.; Li, X. Research and applicability analysis of moisture production function in winter wheat and summer corn. Shandong Water Res. 1999, 01, 40–42. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Lu, J.; Jin, J. Research and application of water demand law and water production function of tomato with drip irrigation in daylight greenhouse. Water Saving Irrig. 2001, 4, 26–28. [Google Scholar]
- Han, H.; Kang, F. Experiment and study on effect of moisture coerce on cotton producing. Trans. Chin. Soc. Agric. Eng. 2001, 3, 37–40. [Google Scholar]
- Song, L.; Shao, Y. Water sensitivity indexes for spring wheat and optimum distribution of limited water during its development stage. J. South Chin. Agric. Univ. 2003, 4, 1–4. [Google Scholar]
- Li, X.; Zhang, H.; Li, F.; Deng, H.; Wang, Z.; Chen, X. Evaluating Effects of Regulated Deficit Irrigation under Mulched on Yield and Quality of Pumpkin in a Cold and Arid Climate. Water 2022, 14, 1563. [Google Scholar] [CrossRef]
- Allison, F.E.; Roller, E.M.; Raney, W.A. Relationship Between Evapotranspiration and Yields of Crops Grown in Lysimeters Receiving Natural Rainfall 1. Agron. J. 1958, 50, 506–511. [Google Scholar] [CrossRef]
- Malve, S.H.; Rao, P.; Dhake, A. Evaluation of water production function and optimization of water for winter wheat (Triticum aestivum L.) under drip Irrigation. Ecol. Environ. Conserv. 2016, 16, 1389–1398. [Google Scholar]
- Zhang, H.J.; Li, J. Water Consumption of Potato (Solanum Tuberosum) Grown under Water Deficit Regulated with Mulched Drip Irrigation. Appl. Mech. Mater. 2013, 405–408, 2273–2276. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; He, Z.; Li, F.; Wang, Z.; Zhou, C.; Han, Y.; Lei, L. Effects of Regulated Deficit Irrigation on Yield and Quality of Isatis indigotica in a Cold and Arid Environment. Water. 2022, 14, 1798. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, Y.; Wang, R.; Zhao, S. Modeling the relationship of tomato yield parameters with deficit irrigation at different growth stages. HortScience 2019, 54, 1492–1500. [Google Scholar] [CrossRef]
- Kuşçu, H. Mathematical Modelling of Crop Water Productivity for Processing Tomato. J. Agric. Sci. 2019, 25, 137–146. [Google Scholar] [CrossRef] [Green Version]
Treatment | Deficit | Seedling Stage | Tuber Initiation Stage | Tuber Bulking Stage | Starch Accumulation Stage |
---|---|---|---|---|---|
WD1 | Slight water deficit during seedling stage | 55%~65% | 65%~75% | 65%~75% | 65%~75% |
WD2 | Slight water deficit during tuber initiation | 65%~75% | 55%~65% | 65%~75% | 65%~75% |
WD3 | Slight water deficit during tuber bulking | 65%~75% | 65%~75% | 55%~65% | 65%~75% |
WD4 | Slight water deficit during starch accumulation | 65%~75% | 65%~75% | 65%~75% | 55%~65% |
WD5 | Moderate water deficit during seedling | 45%~55% | 65%~75% | 65%~75% | 65%~75% |
WD6 | Moderate water deficit during tuber initiation | 65%~75% | 45%~55% | 65%~75% | 65%~75% |
WD7 | Moderate water deficit during tuber bulking | 65%~75% | 65%~75% | 45%~55% | 65%~75% |
WD8 | Moderate water deficit during starch accumulation | 65%~75% | 65%~75% | 65%~75% | 45%~55% |
CK | Full irrigation throughout the growth period | 65%~75% | 65%~75% | 65%~75% | 65%~75% |
Year | Treatment | Water Consumption/mm | ||||
---|---|---|---|---|---|---|
Seedling | Tuber Formation | Tuber Bulking | Starch Accumulation | Water Consumption of Whole Growth Period | ||
2019 | CK | 76.33 ab | 134.49 ab | 224.43 ab | 117.68 ab | 552.93 a |
WD1 | 67.37 b | 134.16 ab | 225.76 ab | 116.55 ab | 543.83 ab | |
WD2 | 76.41 ab | 121.58 b | 228.62 a | 119.69 ab | 546.3 ab | |
WD3 | 74.92 ab | 135.19 ab | 206.05 b | 120.08 ab | 536.24 ab | |
WD4 | 75.83 ab | 135.88 ab | 225.82 ab | 104.72 b | 542.25 ab | |
WD5 | 58.86 c | 137.43 a | 223.39 ab | 115.37 ab | 535.05 ab | |
WD6 | 74.18 ab | 109.42 c | 226.53 ab | 119.13 ab | 529.26 b | |
WD7 | 77.59 a | 133.96 ab | 186.47 c | 120.81 a | 518.83 c | |
WD8 | 74.76 ab | 133.53 ab | 227.95 ab | 90.22 c | 526.46 b | |
2020 | CK | 56.51 bc | 128.43 ab | 236.31 ab | 92.47 bc | 513.72 ab |
WD1 | 45.54 c | 116.39 b | 247.96 ab | 96.15 ab | 506.04 ab | |
WD2 | 60.10 ab | 105.17 c | 250.42 a | 85.14 c | 500.83 ab | |
WD3 | 64.70 ab | 129.40 a | 214.02 bc | 89.59 bc | 497.71 ab | |
WD4 | 62.35 ab | 119.50 ab | 244.20 ab | 93.52 bc | 519.58 a | |
WD5 | 39.78 d | 119.35 ab | 243.68 ab | 94.49 b | 497.30 ab | |
WD6 | 62.00 ab | 90.61 d | 224.15 b | 100.15 ab | 476.91 ab | |
WD7 | 56.68 b | 127.54 ab | 184.22 c | 103.92 a | 472.36 b | |
WD8 | 64.77 a | 114.59 bc | 244.13 ab | 74.73 d | 498.23 ab | |
Average | CK | 66.42 ab | 131.46 ab | 230.37 ab | 105.07 ab | 533.33 a |
WD1 | 56.46 b | 125.27 ab | 236.86 ab | 106.35 ab | 524.94 ab | |
WD2 | 68.25 ab | 113.38 b | 239.52 a | 102.42 b | 523.57 ab | |
WD3 | 69.81 a | 132.30 a | 210.03 b | 104.83 ab | 516.98 ab | |
WD4 | 69.09 ab | 127.69 ab | 235.01 ab | 99.12 bc | 530.92 ab | |
WD5 | 49.32 c | 128.39 ab | 233.53 ab | 104.93 ab | 516.18 ab | |
WD6 | 68.09 ab | 100.02 c | 225.34 ab | 109.64 ab | 503.09 ab | |
WD7 | 67.14 ab | 130.75 ab | 185.35 c | 112.36 a | 495.60 b | |
WD8 | 69.76 ab | 124.06 ab | 236.04 ab | 82.48 c | 512.35 ab | |
ANOVA | Treatment (T) | ** | ** | ** | ** | ** |
Year (Y) | ns | ns | ns | ns | ns | |
T × Y | ns | ns | ns | ns | ns |
Mathematical Models | Sensitivity Index | Stages | |||
---|---|---|---|---|---|
Seedling | Tuber Initiation | Tuber Bulking | Starch Accumulation | ||
Jensen | λi | 0.4517 | 0.8205 | 0.9233 | 0.3748 |
Minhas | Bi | 2.0158 | 4.9177 | 4.8805 | 1.8402 |
Blank | Ai | 0.1170 | 0.3318 | 0.4509 | 0.3700 |
Stewart | Ki | 0.4855 | 0.8392 | 0.9524 | 0.4013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, H.; Li, X.; Deng, H.; Chen, X.; Liu, L. Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment. Water 2022, 14, 2044. https://doi.org/10.3390/w14132044
Li F, Zhang H, Li X, Deng H, Chen X, Liu L. Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment. Water. 2022; 14(13):2044. https://doi.org/10.3390/w14132044
Chicago/Turabian StyleLi, Fuqiang, Hengjia Zhang, Xuan Li, Haoliang Deng, Xietian Chen, and Lintao Liu. 2022. "Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment" Water 14, no. 13: 2044. https://doi.org/10.3390/w14132044
APA StyleLi, F., Zhang, H., Li, X., Deng, H., Chen, X., & Liu, L. (2022). Modelling and Evaluation of Potato Water Production Functions in a Cold and Arid Environment. Water, 14(13), 2044. https://doi.org/10.3390/w14132044