Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Collection and Analysis
2.2. Data Analysis
2.2.1. Water Quality Index (WQI)
2.2.2. Multivariate Statistics Analysis
3. Results
3.1. Surface Water Quality Variation
3.2. Principal Component Analysis (PCA)
3.3. Cluster Analysis (CA)
4. Discussion
4.1. Overall Surface Water Assessment
4.2. Potential Pollution Sources
4.3. The Evaluation of Monitoring Locations of Surface Water Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van, C.T.; Thuan, D.T. The importance of water source and hydraulic systems on river Lancang—Mekong. Vietnam J. Hydrometeorol. 2019, 2, 38–44. [Google Scholar]
- Bussi, G.; Darby, S.E.; Whitehead, P.G.; Jin, L.; Dadson, S.J.; Voepel, H.E.; Vasilopoulos, G.; Hackney, C.R.; Hutton, C.; Berchoux, T.; et al. Impact of dams and climate change on suspended sediment flux to the Mekong Delta. Sci. Total Environ. 2021, 755, 142468. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- People’s Committee of An Giang Province. Report on the Implementation of the Socio-Economic Development Plan in 2020, and the Direction of Socio-Economic Tasks in 2021; People’s Committee of An Giang Province: An Giang, Vietnam, 2020; pp. 1–27. [Google Scholar]
- Nhat, G.M. Assessment of Water Flow Duration of Hau River in Can Tho Period 2000–2020. Bachelor’s Thesis, Can Tho University, Can Tho, Vietnam, 2021. (In Vietnamese). [Google Scholar]
- Ly, N.H.T.; Giao, N.T. Surface water quality in canals in An Giang province, Viet Nam, from 2009 to 2016. J. Viet. Environ. 2018, 10, 113–119. [Google Scholar] [CrossRef]
- Ty, D.V.; Ut, V.N.; Viet, T.V.; Huy, N.H.; Da, C.T. Evaluation of water quality variation in Bung Binh Thien, An Giang province. CTUJS 2018, 54, 125–131. [Google Scholar]
- Truc, D.T.; Phat, P.H.; Nam, N.D.G.; Toan, P.V.; Tri, V.P.D. Surface water quality of Tien River flowing through Tan Chau area, An Giang province. CTUJS 2019, 55, 53–60. [Google Scholar]
- Cho, K.H.; Park, Y.; Kang, J.H.; Ki, S.J.; Cha, S.; Lee, S.W.; Kim, J.H. Interpretation of seasonal water quality variation in the Yeongsan Reservoir, Korea using multivariate statistical analyses. Water Sci. Technol. 2009, 59, 2219–2226. [Google Scholar] [CrossRef]
- Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Water Sci. Technol. 2017, 66, 1510–1522. [Google Scholar] [CrossRef]
- Barakat, A.; El-Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Abed, S.; Ewaid, S.; Al-Ansari, N. Evaluation of Water quality in the Tigris River within Baghdad, Iraq using Multivariate Statistical Techniques. J. Phys. Conf. Ser. 2019, 1294, 072025. [Google Scholar] [CrossRef]
- Fraga, M.S.; Reis, G.B.; da-Silva, D.D.; Guedes, H.A.S.; Elesbon, A.A.A. Use of multivariate statistical methods to analyze the monitoring of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 35303–35318. [Google Scholar]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Yilma, M.; Kiflie, Z.; Windsperger, A.; Gessese, N. Assessment and interpretation of river water quality in Little Akaki River using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2019, 16, 3707–3720. [Google Scholar] [CrossRef]
- National Standard 6492: 2011 (ISO 10523:2008). Water Quality—Determination of pH. Ministry of Science and Technology: Hanoi, Vietnam, 2011.
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- National Standard 6287-2:1996 (ISO 9308-2: 1990). Water Quality—Detection and Enumeration of Organisms Thermo Tolerant Coliform Organisms and Presumptive Escherichia coli. Part 2: Multiple Tube (Most Probable Number) Method. Ministry of Science and Technology: Hanoi, Vietnam, 1996.
- QCVN 08-MT:2015/BTNMT. National Technical Regulation on Surface Water Quality. Ministry of Environment and Natural Resources (MONRE): Hanoi, Vietnam, 2015.
- Vietnam Environment Administration (VEA). Decision 1460/QD-TCMT Dated November 12, 2019 on the Issuing of Technical Guide to Calculation and Disclosure Vietnam Water Quality Index (VN_WQI); VEA: Hanoi, Vietnam, 2019. [Google Scholar]
- Kowalkowski, T.; Zbytniewski, R.; Szpejna, J.; Buszewski, B. Application of chemometrics in river water classification. Water Res. 2006, 40, 744–752. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.; Liu, Y.; Wu, J.; Yu, M. Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environ. Monit. Assess. 2011, 173, 17–27. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, U.K.; Ojha, S.N. Evaluation of geochemical data of Yamuna River using WQI and multivariate statistical analyses: A case study. Int. J. River Basin Manag. 2019, 17, 143–155. [Google Scholar] [CrossRef]
- Lien, N.T.K.; Phu, T.Q.; Oanh, D.T.H.; Ut, V.N.; Huy, L.Q. Water quality in the main and tributary rivers of the Hau River route. CTUJS 2016, 43, 68–79. [Google Scholar]
- Giao, N.T. Evaluating current water quality monitoring system on Hau River, Mekong delta, Vietnam using multivariate statistical technique. Appl. Environ. Res. 2020, 42, 14–25. [Google Scholar]
- Giao, N.T.; Minh, V.Q. Evaluating surface water quality and water monitoring variables in Tien River, Vietnamese Mekong Delta. J. Teknol. 2021, 83, 29–36. [Google Scholar]
- Boyd, C.E.; Green, B.W. Water quality monitoring in shrimp farming areas: An example from Honduras, shrimp farming and the environment. In Report Prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment; Consortium Program on Shrimp Farming and the Environment: Auburn, AL, USA, 2012; p. 29. [Google Scholar]
- Phu, T.Q.; Ut, V.N. Water Quality for Pond Aquaculture. Bachelor’s Thesis, Can Tho University, Can Tho, Vietnam, 2006. (In Vietnamese). [Google Scholar]
- Giao, N.T. Spatial variations of surface water quality in Hau Giang Province, Vietnam using multivariate statistical techniques. Nat. Resour. Environ. 2020, 18, 400–410. [Google Scholar] [CrossRef]
- Giao, N.T.; Anh, P.K.; Nhien, H.T.H. Spatiotemporal analysis of surface water quality in Dong Thap province, Vietnam using water quality index and statistical approaches. Water 2021, 13, 336. [Google Scholar] [CrossRef]
- Giao, N.T.; Cong, N.V.; Nhien, H.T.H. Using remote sensing and multivariate statistics in analyzing the relationship between land use patterns and water quality in Tien Giang province, Vietnam. Water 2021, 13, 1093. [Google Scholar] [CrossRef]
- Galal-Gorchev, H.; Ozolins, G.; Bonnefoy, X. Revision of the WHO guidelines for drinking water quality. Ann. Ist. Super. Sanita 1993, 29, 335–345. [Google Scholar]
- Ratpukdi, T.; Sinora, S.; Kiattisaksiri, P.; Punyapalakul, P.; Siripattanakul-Ratpukdi, S. Occurrence of trihalomethanes and haloacetonitriles in water distribution networks of Khon Kaen Municipality, Thailand. Water Supply 2019, 19, 1748–1757. [Google Scholar] [CrossRef]
- Tuan, D.D.A.; Thu, B.A.; Trung, N.H. Assessing quality of surface water for urban water supply source for Soc Trang City. CTUJS 2019, 4, 61–70. (In Vietnamese) [Google Scholar]
- Giao, N.T.; Nhien, H.T.H. Phytoplankton-water quality relationship in water bodies in the Mekong Delta, Viet Nam. Appl. Environ. Res. 2020, 42, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mekong River Commission (MRC). Lower Mekong regional water quality monitoring report. In MRC Technical Paper No. 51; Mekong River Commission (MRC): Vientiane, Laos, 2015. [Google Scholar]
- Martin, G.D.; Vuay, J.G.; Laluraj, C.M.; Madhu, N.V.; Joseph, T.; Nair, M.; Gupta, G.V.M.; Balachandran, K.K. Fresh water influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Appl. Ecol. Environ. Res. 2008, 6, 57–64. [Google Scholar] [CrossRef]
- Huynh, L.T.P.; Cuong, H.T.; Thuy, D.T.; Ngoc, N.T.B.; An, V.D.; Long, P.Q.; Christina, S. Water quality of the Red River system in the period 2012–2013. J. Viet. Env. 2014, 6, 191–195. [Google Scholar]
- Divya, A.H.; Solomon, P.A. Effects of some water quality parameters especially total coliform and fecal coliform in surface water of Chalakudy river. Proc. Technol. 2016, 24, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Yang, H.; Li, N.; Gong, C. Spatiotemporal analysis of water quality using multivariate statistical techniques and the water quality identification index for the Qinhuai river basin, East China. Water 2020, 12, 2764. [Google Scholar] [CrossRef]
Parameters | Unit | Analytical Methods [16] | Limit Values [19] | |||
---|---|---|---|---|---|---|
Column A1 | Column A2 | Column B1 | Column B2 | |||
Temp. | °C | SMEWW 2550B:2012 | - | - | - | - |
pH | - | TCVN 6492:2011 | 6–8.5 | 6–8.5 | 5.5–9 | 5.5–9 |
TSS | mg L−1 | SMEWW 2540D:2012 | 20 | 30 | 50 | 100 |
BOD5 | mg L−1 | SMEWW 5210B:2012 | 4 | 6 | 15 | 25 |
COD | mg L−1 | SMEWW 5220C:2012 | 10 | 15 | 30 | 50 |
NH4+-N | mg L−1 | SMEWW 4500-NH3.B&F:2012 | 0.3 | 0.3 | 0.9 | 0.9 |
Coliform | MPN 100 mL−1 | TCVN 6187-2:1996 | 2500 | 5000 | 7500 | 10,000 |
Use purposes | - | - | Daily activities, aquatic flora and fauna conservation | Daily activities (must apply appropriate treatment technology) | Irrigation or other uses | Navigation and other purposes with low water quality requirements |
Par. | Base Line | Impact | ||||
---|---|---|---|---|---|---|
Urban | Industry | Tourism | Aquaculture | Flood Control | ||
Temp. | 29.77 ± 0.76 | 29.93 ± 0.5 | 29.63 ± 0.73 | 29.78 ± 0.12 | 29.78 ± 0.52 | 29.62 ± 0.63 |
pH | 7.18 ± 0.08 | 7.19 ± 0.14 | 7.15 ± 0.01 | 7.22 ± 0.11 | 7.19 ± 0.06 | 7.2 ± 0.09 |
TSS | 55.12 ± 6.8 | 59.59 ± 8.82 | 53.33 ± 3.59 | 54.17 ± 1.65 | 53.53 ± 4.8 | 58.05 ± 6.21 |
COD | 21.14 ± 6.13 b | 37.22 ± 18.76 a | 27.92 ± 4.9 ab | 33.33 ± 10.37 a | 21.14 ± 5.75 b | 29.62 ± 6.47 ab |
BOD5 | 13.75 ± 4.04 b | 24.19 ± 12.21 a | 18.17 ± 3.17 ab | 21.67 ± 6.6 a | 13.65 ± 3.81 b | 19.14 ± 4.27 ab |
NH₄⁺-N | 0.57 ± 0.42 b | 2.19 ± 1.74 a | 1.09 ± 0.37 b | 0.36 ± 0.04 b | 0.59 ± 0.46 b | 0.59 ± 0.24 b |
Coliform | 16,125 ± 8587 b | 31,363 ± 11,476 a | 15,358 ± 6876 b | 11,067 ± 2168 b | 16,954 ± 8150 b | 18,967 ± 16,645 b |
Water quality index | 33 | 19 | 28 | 31 | 31 | 38 |
Cluster | I | II | III | IV | V | VI | VII | VIII | IX | X | XI |
---|---|---|---|---|---|---|---|---|---|---|---|
Temp. | 29.51 | 29.21 | 29.63 | 28.73 | 30.01 | 30.53 | 29.97 | 29.91 | 30.78 | 30.08 | 30.77 |
pH | 7.18 | 7.14 | 7.11 | 7.12 | 7.30 | 7.21 | 7.24 | 7.19 | 7.19 | 7.18 | 7.25 |
TSS | 49.06 | 48.67 | 56.13 | 52.75 | 50.20 | 52.96 | 58.82 | 60.50 | 69.11 | 60.11 | 80.33 |
COD | 16.94 | 14.87 | 25.14 | 21.79 | 17.14 | 21.04 | 23.48 | 35.10 | 28.89 | 54.33 | 54.67 |
BOD5 | 10.94 | 9.47 | 16.37 | 14.13 | 11.07 | 13.63 | 15.27 | 22.75 | 18.89 | 35.33 | 35.67 |
NH₄⁺-N | 0.44 | 0.24 | 0.88 | 0.40 | 0.40 | 0.69 | 0.78 | 0.96 | 0.56 | 4.47 | 0.65 |
Coliforms | 11,726 | 26,100 | 15,644 | 7625 | 9453 | 14,150 | 34,603 | 18,488 | 17,378 | 23,178 | 46,000 |
WQI | 26 | 28 | 21 | 54 | 45 | 23 | 22 | 18 | 22 | 14 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, T.T.K.; Giao, N.T. Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water 2022, 14, 1975. https://doi.org/10.3390/w14121975
Hong TTK, Giao NT. Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water. 2022; 14(12):1975. https://doi.org/10.3390/w14121975
Chicago/Turabian StyleHong, Tran Thi Kim, and Nguyen Thanh Giao. 2022. "Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics" Water 14, no. 12: 1975. https://doi.org/10.3390/w14121975
APA StyleHong, T. T. K., & Giao, N. T. (2022). Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water, 14(12), 1975. https://doi.org/10.3390/w14121975