Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Field Management
- (1)
- Straw strip mulching (the high coverage rate, S1): using alternating straw strip (0.5 m) and plant strip (0.35 m), with the coverage rate maintained at 59%.
- (2)
- Straw strips mulching (the moderate coverage rate, S2): using alternating straw strip (0.5 m) and plant strip (0.5 m), with the coverage rate maintained at 50%.
- (3)
- Straw strips mulching (the low coverage rate, S3): using alternating straw strip (0.5 m) and plant strip (0.7 m), with the coverage rate maintained at 42%.
- (4)
- Full-cover transparent plastic film mulching (BM): coverage rate approximately maintained at 100%.
- (5)
- Full-cover black plastic film mulching (HM): coverage rate approximately maintained at 100%.
- (6)
- No coverage (CK): using conventional flat planting without mulching.
2.3. Sampling and Measurements
2.3.1. Soil Water Content
- (1)
- Soil water storage (mm) = soil depth (cm) × soil bulk density (g·cm−3) × soil gravimetric water content (%) × 10.
- (2)
- Stage water consumption (mm) = soil water storage (mm) at the beginning of a growth period − soil water storage (mm) at the end of the growth period + effective precipitation (mm) more than 5 mm at the corresponding stage.
- (3)
- Water use efficiency (kg·ha−1·mm−1) for grain yield (WUEr) = grain yield (kg·ha−1)/soil water total consumption (mm) throughout the growth stage.
- (4)
- Water use efficiency (kg·ha−1·mm−1) for aboveground biomass (WUEb) = aboveground biomass (kg·ha−1)/soil water total consumption (mm) at the whole growth period.
2.3.2. Soil Organic Carbon
2.3.3. Yield and Its Components
2.4. Data Analysis
3. Results
3.1. Differences in Soil Water Content at Different Growth Periods and Soil Layers
3.2. Soil Water Storage in the 0–200 cm Soil Layer
3.3. Evapotranspiration and Its Proportion at the Different Growth Stages
3.4. Water USE efficiency (WUE)
3.5. Soil Organic Carbon
3.6. Yield and Agronomic Indicators
4. Discussion
4.1. Effects of Mulching on Soil Moisture Content and Water Consumption
4.2. Effects of Mulching on Soil Organic Carbon
4.3. Effects of Mulching on Yield and Agronomic Indexes of Winter Wheat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.; Shao, M.A. Advances and perspectives on soil water research in China’s Loess Plateau. Earth-Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Chen, X.; Wang, Z. Straw mulch as an alternative to plastic film mulch: Positive evidence from dryland wheat production on the Loess Plateau. Sci. Total Environ. 2019, 676, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, Z.; Liang, L. Effect of straw incorporation on the temporal variations of water characteristics, water use efficiency and maize biomass production in semi-arid China. Soil Tillage Res. 2015, 153, 36–41. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Feng, H.; Hill, R.; Chu, X.; Zhang, T.; He, J. Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China. Agric. Water Manag. 2018, 201, 246–257. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Fan, H.; Fan, Z.; Hu, F.; Zhao, C.; Yu, A.; Coulter, J. No tillage with plastic re-mulching maintains high maize productivity via regulating hydrothermal effects in an arid region. Front. Plant Sci. 2021, 12, 649–684. [Google Scholar] [CrossRef]
- Hou, H.; Gao, S.; Zhang, X.; Wang, D. Effects of soil-plastic mulching on water consumption characteristics and grain yield of spring wheat in semi-arid region. J. Soil Water Conserv. 2017, 31, 202–210. [Google Scholar] [CrossRef]
- Yang, C.; Chai, S. Regulatory effects of bundled straw covering on winter wheat yield and soil thermal-moisture utilization in dryland. Chin. J. Appl. Ecol. 2018, 29, 3245–3255. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Li, T.; Jia, W.; Gao, H.; Li, C.; Huang, T.; Dou, L. Overview of Effect of Film Mulching on Crop Yield and Soil Moisture in Dry Land. J. Shanxi Agric. Sci. 2018, 46, 461–465. [Google Scholar]
- Zhao, H.; Wang, R.; Ma, B.; Xiong, Y.; Qiang, S.; Wang, C.; Liu, C.; Li, F. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crops Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Yang, C.; Chai, S.; Chang, L. Influences of different plastic film mulches on soil water use and yield of winter wheat in semiarid rain-fed region. Acta Ecol. Sin. 2015, 35, 2676–2685. [Google Scholar] [CrossRef]
- Qi, R.; Jones, D.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Mei, X.; Zhang, Y.; Sun, Z.; et al. An overview of the use of plastic-film mulching in China to increase crop yield and water-use efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Cuello, J.; Hwang, H.; Gutierrez, J.; Kim, S.Y.; Kim, P.J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, M.; Malinconico, M.; Immirzi, B.; Pagliara, S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polym. Degrad. Stab. 2006, 91, 2801–2808. [Google Scholar] [CrossRef]
- Zribi, W.; Aragues, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef]
- Zhao, F.; Wen, X.; Du, S.; Wang, H.; Fu, Z. Ecological effects and applied techniques of stubble mulching in the Weibei area. Agric. Res. Arid Areas 2005, 23, 90–95. [Google Scholar]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crops Res. 2014, 163, 55–63. [Google Scholar] [CrossRef]
- Wang, L.; Shangguan, Z. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Sci. Rep. 2015, 5, 12225. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.; Niu, J.; Yang, C.; Liu, L.; Chai, Q. Chapter Seven-Ridge-Furrow Mulching Systems: An Innovative Technique for Boosting Crop Productivity in Semiarid Rainfed Environments; Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2013; pp. 429–476. [Google Scholar]
- Yan, Z.; Gao, C.; Ren, Y.; Zong, R.; Ma, Y.; Li, Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agric. Water Manag. 2017, 186, 21–28. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Sun, H.; Shao, L. Cause and mechanism of winter wheat yield reduction under straw mulching in the North China Plain. Chin. J. Eco-Agric. 2013, 21, 519–525. [Google Scholar] [CrossRef]
- Gao, Y.; Li, S. Cause and mechanism of crop yield reduction under straw mulch in dryland. Trans. Chin. Soc. Agric. Eng. 2005, 21, 15–19. [Google Scholar]
- Akhtar, K.; Wang, W.; Khan, A.; Ren, G.; Afridi, M.; Feng, Y.; Yang, G. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Chang, L.; Han, F.; Chai, Y.; Bao, Z.; Cheng, H.; Huang, C.; Yang, D.; Chai, S. Effects of bundled straw mulching on water consumption characteristics and grain yield of winter wheat in rain-fed semiarid region. Chin. J. Appl. Ecol. 2019, 30, 4150–4158. [Google Scholar] [CrossRef]
- Chai, Y.; Chai, Q.; Li, R.; Li, Y.; Yang, C.; Cheng, H.; Chang, L.; Chai, S. Straw strip mulching in a semiarid rainfed agroecosystem achieves winter wheat yields similar to those of full plastic mulching by optimizing the soil hydrothermal regime. Crop J. 2021. [Google Scholar] [CrossRef]
- Chang, L.; Han, F.; Chai, S.; Cheng, H.; Yang, D.; Chen, Y. Straw strip mulching affects soil moisture and temperature for potato yield in semiarid regions. Agron. J. 2020, 112, 1126–1139. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis, 3rd ed.; Beijing China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Yang, H.; Wang, T.; Dou, Y.; Zhao, H.; Mao, A.; Wang, Z. Effects of plastic film mulching and straw mulching on wheat yield and nitrogen utilization during different precipitation years. J. Plant Nutr. Fertil. 2021, 27, 1905–1914. [Google Scholar]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, X.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Mao, H.; Wang, J.; Fu, X.; Li, R.; Zhao, D. Seasonal dynamics of soil organic carbon fractions under straw and plastic film mulching of spring maize. Chin. J. Eco-Agric. 2018, 26, 347–356. [Google Scholar] [CrossRef]
- Bu, Y.; Shao, H.; Wang, J.; Miao, G.Y. Dynamics of soil carbon and nitrogen in plowed layer of spring corn and spring wheat fields mulched with straw and plastic film. Chin. J. Eco-Agric. 2010, 18, 322–326. [Google Scholar] [CrossRef]
- Cui, F.; Liu, J.; Li, L.; Gao, J.; Li, Q. Effect of zero tillage with mulching on active soil organic carbon library. J. Northwest Agric. 2012, 21, 195–200. [Google Scholar]
- Sébastien, F.; Sébastien, B.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon in deep soil layers controlled by fresh carbon supply. Nature 2007, 450, 277–280. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, J.; Liu, Q.; Lun, W. Effects of soil surface mulching on soil organic carbon and its fractions in a wheat field in loess plateau. Agric. Res. Arid Areas 2014, 32, 161–167. [Google Scholar]
- Ye, Y.; Feng, Y.; Xu, J.; Zhang, R.; Hu, C.; Lei, T.; Zhang, S. Effect of plastic film mulching on wheat yield and water use efficiency in south of Loess Plateau. Acta Agric. Boreali-Occident. Sin. 2020, 29, 1325–1338. [Google Scholar]
- Li, F.; Yan, X.; Wang, J.; Li, S.; Wang, T. The mechanism of yield decrease of spring wheat resulted from plastic film mulch. Sci. Agric. Sin. 2001, 34, 330–333. [Google Scholar]
- Garcia, G.A.; Serrago, R.A.; Derccer, M.F.; Miralles, D.J. Post-anthesis warm nights reduce grain weight infield-grown wheat And barley. Field Crops Res. 2016, 195, 50–59. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Z.X.; Hui, X.; Zhang, X.; Ma, Q.; Bao, M.; Zhao, Y.; Huang, M.; Wang, S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of Loess Plateau. Acta Agron. Sin. 2018, 44, 886–896. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Wu, W.; Yu, S.; Zhou, X.; Dong, Q.; Yu, S. Effects of straw mulching and irrigation on solar energy utilization efficiency of winter wheat farmland. Chin. J. Appl. Ecol. 2006, 17, 243–246. [Google Scholar]
- Dong, K.; Liu, T.; He, J.; Ren, R.; Zhang, L. Effects of different film mulching-patterns on soil thermal-moisture and broomcorn millet water consumption characteristics in semiarid region on Northwest Loess Plateau. Sci. Agric. Sin. 2018, 51, 2274–2287. [Google Scholar]
Year | Treatments | Soil Water Storage before Sowing (mm) | Soil Water Storage at the JS (mm) | Soil Water Storage at the BS (mm) | Soil Water Storage after Harvest (mm) |
---|---|---|---|---|---|
2019–2020 | S1 | 448.63 | 381.27 ± 9.52 a | 337.57 ± 8.92 a | 313.28 ± 13.03 a |
S2 | 444.18 | 366.95 ± 8.98 ab | 326.51 ± 10.29 ab | 290.15 ± 7.62 ab | |
S3 | 434.37 | 364.61 ± 11.47 ab | 320.50 ± 14.21 ab | 285.16 ± 11.97 ab | |
BM | 435.97 | 380.25 ± 7.74 a | 321.47 ± 14.99 ab | 269.25 ± 14.59 b | |
HM | 448.51 | 375.14 ± 8.98 ab | 321.26 ± 14.61 ab | 285.02 ± 13.06 ab | |
CK | 445.54 | 346.51 ± 8.58 b | 299.34 ± 9.35 b | 261.87 ± 13.13 b | |
2020–2021 | S1 | 490.00 | 427.00 ± 6.62 a | 388.05 ± 16.44 a | 366.60 ± 5.79 a |
S2 | 470.00 | 405.66 ± 6.18 ab | 354.32 ± 9.19 ab | 339.98 ± 13.88 ab | |
S3 | 470.00 | 405.18 ± 22.64 ab | 357.65 ± 23.97 ab | 333.55 ± 3.83 ab | |
BM | 455.00 | 391.36 ± 21.44 b | 353.13 ± 21.49 b | 313.07 ± 22.13 b | |
HM | 465.00 | 400.09 ± 14.90 ab | 367.72 ± 17.01 ab | 323.35 ± 15.27 b | |
CK | 455.00 | 381.51 ± 16.09 b | 344.00 ± 24.91 b | 320.00 ± 12.3 ab |
Year | Treatments | ET at Each Stage | ET (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Sowing to JS | JS to BS | BS to MS | |||||||||
RF (mm) | CA (mm) | CP (%) | RF (mm) | WC (mm) | CP (%) | RF (mm) | WC (mm) | CP (%) | |||
2019– 2020 | S1 | 100.40 | 167.79 ± 5.78 b | 44.30 | 66.73 | 110.40 ± 9.22 b | 29.15 | 76.27 | 100.56 ± 4.47 b | 26.55 | 378.75 ± 10.00 d |
S2 | 177.63 ± 10.28 a | 44.69 | 107.17 ± 8.83 b | 26.97 | 112.63 ± 9.94 ab | 28.34 | 397.43 ± 8.64 bcd | ||||
S3 | 170.15 ± 11.47 ab | 43.34 | 110.84 ± 7.21 b | 28.23 | 111.62 ± 3.00 ab | 28.43 | 392.61 ± 11.96 cd | ||||
BM | 168.66 ± 3.74 b | 39.90 | 125.51 ± 7.25 a | 29.70 | 128.49 ± 8.09 a | 30.40 | 422.66 ± 11.38 a | ||||
HM | 170.80 ± 6.01 ab | 42.29 | 120.60 ± 5.95 a | 29.86 | 112.52 ± 5.1 ab | 27.86 | 403.92 ± 10.39 abc | ||||
CK | 188.21 ± 11.57 a | 45.31 | 113.39 ± 10.30 a | 27.30 | 113.74 ± 6.96 ab | 27.38 | 415.34 ± 15.59 ab | ||||
2020– 2021 | S1 | 97.16 | 160.16 ± 6.62 b | 53.39 | 21.39 | 60.34 ± 12.55 ab | 20.11 | 58.05 | 79.51 ± 8.66 b | 26.50 | 300.00 ± 14,22 b |
S2 | 161.50 ± 6.18 ab | 52.67 | 72.72 ± 12.25 a | 23.72 | 72.40 ± 6.45 b | 23.61 | 306.62 ± 13.88 ab | ||||
S3 | 161.98 ± 3.34 ab | 51.74 | 68.93 ± 10.85 ab | 22.02 | 82.14 ± 10.88 b | 26.24 | 313.05 ± 3.23 ab | ||||
BM | 160.80 ± 5.35 b | 50.48 | 59.62 ± 12.33 ab | 18.72 | 98.11 ± 9.06 a | 30.80 | 318.53 ± 7.89 a | ||||
HM | 162.07 ± 5.95 ab | 50.93 | 53.76 ± 7.09 b | 16.89 | 102.42 ± 3.51 a | 32.18 | 318.25 ± 11.93 a | ||||
CK | 170.65 ± 3.30 a | 54.76 | 58.90 ± 5.03 ab | 18.90 | 82.05 ± 4.10 b | 26.33 | 311.60 ± 2.35 ab |
Year | Treatments | Grain Yield (kg·ha−1) | Thousand Grain Weight (g) | Spike Number (×104·ha−1) | Grain Number per Ear | Biomass (kg·ha−1) | Harvest Index (%) |
---|---|---|---|---|---|---|---|
2019–2020 | S1 | 3775.78 ± 184.71 ab | 42.97 ± 2.39 bc | 236.90 ± 21.73 a | 40.23 ± 1.91 ab | 9066.27 ± 174.88 bc | 41.66 ± 0.95 ab |
S2 | 3800.63 ± 174.31 ab | 42.46 ± 3.27 c | 254.64 ± 13.34 a | 38.45 ± 1.70 ab | 9902.47 ± 154.67 ab | 38.71 ± 4.23 b | |
S3 | 3866.57 ± 176.92 ab | 43.26 ± 2.28 bc | 254.50 ± 20.88 a | 37.95 ± 1.56 ab | 9009.86 ± 55.21 bc | 42.92 ± 0.52 ab | |
BM | 4088.69 ± 213.49 a | 47.48 ± 0.96 ab | 263.15 ± 33.12 a | 35.69 ± 3.97 b | 10397.78 ± 579.86 ab | 39.39 ± 1.93 ab | |
HM | 4020.74 ± 172.73 a | 46.10 ± 0.87 abc | 253.33 ± 12.80 a | 37.23 ± 0.99 ab | 10639.14 ± 239.95 a | 37.80 ± 0.81 b | |
CK | 3630.36 ± 201.64 b | 49.14 ± 1.22 a | 186.45 ± 15.97 b | 43.28 ± 3.83 a | 7998.70 ± 631.17 c | 45.56 ± 3.29 a | |
mean | 3863.80 | 45.63 | 241.50 | 38.81 | 9502.37 | 41.01 | |
2020–2021 | S1 | 4936.89 ± 122.08 bc | 44.03 ± 1.43 a | 252.33 ± bc | 44.88 ± 4.39 ab | 11020.56 ± 814.11 b | 44.80 ± 1.82 a |
S2 | 4832.89 ± 147.21 bc | 43.08 ± 1.57 a | 276.52 ± bc | 40.97 ± 2,8 b | 10744.94 ± 313.23 b | 44.98 ± 1.49 a | |
S3 | 5292.65 ± 269.62 ab | 43.22 ± 2.10 a | 310.61 ± ab | 40.40 ± 2.21 b | 12073.85 ± 663.00 ab | 43.62 ± 0.61 a | |
BM | 5692.77 ± 50.22 a | 43.60 ± 1.58 a | 319.95 ± a | 49.24 ± 3.18 a | 13032.79 ± 157.34 a | 43.90 ± 0.70 a | |
HM | 5470.65 ± 208.84 bc | 41.07 ± 2.79 a | 310.47 ± bc | 51.18 ± 5.67 a | 12541.62 ± 532.69 ab | 43.81 ± 1.85 a | |
CK | 4617.72 ± 78.35 c | 42.41 ± 1.68 a | 221.90 ± c | 44.35 ± 4.29 ab | 10539.33 ± 359.34 b | 43.35 ± 0.78 a | |
mean | 5140.60 | 42.90 | 281.96 | 45.17 | 11658.85 | 44.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Wu, Y.; Ye, Y.; Li, Y.; Ma, J.; Ma, J.; Yan, J.; Chang, L.; Wang, Z.; Wang, Y.; et al. Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment. Water 2022, 14, 1894. https://doi.org/10.3390/w14121894
Huang C, Wu Y, Ye Y, Li Y, Ma J, Ma J, Yan J, Chang L, Wang Z, Wang Y, et al. Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment. Water. 2022; 14(12):1894. https://doi.org/10.3390/w14121894
Chicago/Turabian StyleHuang, Caixia, Yanlin Wu, Yuansheng Ye, Yazhen Li, Juhua Ma, Jiantao Ma, Jixuan Yan, Lei Chang, Zeyi Wang, Yucai Wang, and et al. 2022. "Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment" Water 14, no. 12: 1894. https://doi.org/10.3390/w14121894
APA StyleHuang, C., Wu, Y., Ye, Y., Li, Y., Ma, J., Ma, J., Yan, J., Chang, L., Wang, Z., Wang, Y., & Zhang, H. (2022). Straw Strip Mulching Increases Winter Wheat Yield by Optimizing Water Consumption Characteristics in a Semi-Arid Environment. Water, 14(12), 1894. https://doi.org/10.3390/w14121894