Numerical Study on the Shear Stress Characteristics of Open-Channel Flow over Rough Beds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Turbulence Model and Validation
2.1.1. Improved Delayed Detached Eddy Simulation Model
2.1.2. Model Validation
2.1.3. Validation Results
2.2. Simulation Domain Description and Rough Wall Configuration
2.3. Turbulence Analysis Methods
2.3.1. Statistical Variables for Near-Bed Flow
2.3.2. Quadrant Analysis Methodology
2.3.3. Frequency Spectrum Analysis for Shear Stress
3. Results and Discussion
3.1. Characteristics of Time-Averaged Hydrodynamic Parameters
3.2. Quadrant Analysis for Shear Stress
3.3. Spectrum Analysis for Shear Stress
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, H.; Chen, Y.; Liu, Z.; Zhu, D. Effects of the “Run-of-River” Hydro Scheme on Macroinvertebrate Communities and Habitat Conditions in a Mountain River of Northeastern China. Water 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.Q.; Wang, H.R.; Chen, Y.C.; Liu, Z.W. Longitudinal Distribution of Benthic Macroinvertebrates Affected by a Hydropower Plant Cascade in the Mudan River. Huan Jing Ke Xue = Huanjing Kexue 2020, 41, 3266–3274. [Google Scholar] [PubMed]
- Hayes, J.W.; Goodwin, E.O.; Shearer, K.A.; Hicks, D.M. Relationship between background invertebrate drift concentration and flow over natural flow recession and prediction with a drift transport model. Can. J. Fish. Aquat.Sci. 2019, 76, 871–885. [Google Scholar] [CrossRef]
- Steuer, J.J.; Newton, T.J.; Zigler, S.J. Use of complex hydraulic variables to predict the distribution and density of unionids in a side channel of the Upper Mississippi River. Hydrobiologia 2008, 610, 67–82. [Google Scholar] [CrossRef]
- Gibbins, C.; Vericat, D.; Batalla, R.J. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwater Biol. 2007, 52, 2369–2384. [Google Scholar] [CrossRef]
- Greimel, F.; Schuelting, L.; Graf, W.; Bondar-Kunze, E.; Auer, S.; Zeiringer, B.; Hauer, C. Hydropeaking Impacts and Mitigation. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 8, pp. 91–110. [Google Scholar]
- Gibbins, C.; Vericat, D.; Batalla, R.J.; Gomez, C.M. Shaking and moving: Low rates of sediment transport trigger mass drift of stream invertebrates. Can. J. Fish. Aquat.Sci. 2007, 64, 1–5. [Google Scholar] [CrossRef]
- Salim, S.; Pattiaratchi, C. Sediment resuspension due to near-bed turbulent coherent structures in the nearshore. Cont. Shelf Res. 2020, 194, 104048. [Google Scholar] [CrossRef]
- Blanckaert, K.; Garcia, X.F.; Ricardo, A.M.; Chen, Q.; Pusch, M.T. The role of turbulence in the hydraulic environment of benthic invertebrates. Ecohydrology 2013, 6, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gao, S.; Wang, Y.P.; Jia, J.; Xiong, J.; Zhou, L. Revisiting the problem of sediment motion threshold. Cont. Shelf Res. 2019, 187, 103960. [Google Scholar] [CrossRef]
- Malakauskas, D.M.; Willson, S.J.; Wilzbach, M.A.; Som, N.A. Flow variation and substrate type affect dislodgement of the freshwater polychaete, Manayunkia speciosa. Freshw. Sci. 2013, 32, 862–873. [Google Scholar] [CrossRef]
- Schnauder, I.; Aberle, J.; Rudnick, S.; Garcia, X.F. Incipient motion and drift of benthic invertebrates in boundary shear layers. In International Conference on Fluvial Hydraulics; Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2010; pp. 1453–1461. [Google Scholar]
- Sotiropoulos, F.; Yang, X. Immersed boundary methods for simulating fluid-structure interaction. Prog. Aerosp. Sci. 2014, 65, 1–21. [Google Scholar] [CrossRef]
- Mignot, E.; Barthelemy, E.; Hurther, D. Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 2009, 618, 279–303. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Maddock, I.; Visser, F.; Acreman, M.C. Incorporating Hydrodynamics into Ecohydraulics: The Role of Turbulence in the Swimming Performance and Habitat Selection of Stream-Dwelling Fish. In Ecohydraulics: An Integrated Approach; Maddock, I., Harby, A., Kemp, P., Wood, P., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 9–30. [Google Scholar]
- Li, J.; Li, S.S. Near-bed velocity and shear stress of open-channel flow over surface roughness. Environ. Fluid Mech. 2020, 20, 293–320. [Google Scholar] [CrossRef]
- Kim, S.K.; Choi, S.-U. Prediction of suitable feeding habitat for fishes in a stream using physical habitat simulations. Ecol. Modell. 2018, 385, 65–77. [Google Scholar] [CrossRef]
- Orth, D.J.; Maughan, O.E. Evaluation of the Incremental Methodology for Recommending Instream Flows for Fishes. Trans. Am. Fish. Soc. 1982, 111, 413–445. [Google Scholar] [CrossRef]
- Jowett, I.G.; Davey, A.J.H. A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence–Habitat Availability. Trans. Am. Fish. Soc. 2007, 136, 428–444. [Google Scholar] [CrossRef]
- Holmquist, J.G.; Waddle, T.J. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation. Ecol. Indic. 2013, 28, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.; Mohammadi, M.H.; Day, S.; Hondzo, M.; Sotiropoulos, F. Prediction of Glossosoma biomass spatial distribution in Valley Creek by field measurements and a three-dimensional turbulent open-channel flow model. Water Resour. Res. 2015, 51, 1457–1471. [Google Scholar] [CrossRef]
- Orlandi, P.; Leonardi, S.; Antonia, R.A. Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 2006, 561, 279–305. [Google Scholar] [CrossRef]
- Volino, R.J.; Schultz, M.P.; Flack, K.A. Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 2009, 635, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Jiang, A.; Wu, J. Research on wind resistance characteristics of transverse rod-roughened surface. Acta Aerodyn. Sin. 2016, 34, 517–523. [Google Scholar]
- Ahn, J.; Lee, J.H.; Sung, H.J. Statistics of the turbulent boundary layers over 3D cube-roughened walls. Int. J. Heat Fluid Flow 2013, 44, 394–402. [Google Scholar] [CrossRef]
- Cheng, H.; Castro, I.P. Near wall flow over urban-like roughness. Bound. Layer Meteorol. 2002, 104, 229–259. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Wang, H.; Chen, Y.; Ling, L.; Wang, Z.; Zhang, D. Investigation of Aerator Flow Pressure Fluctuation Using Detached Eddy Simulation with VOF Method. J. Hydraul. Eng. 2022, 148, 04021052. [Google Scholar] [CrossRef]
- Gritskevich, M.S.; Garbaruk, A.V.; Schütze, J.; Menter, F.R.J.F. Turbulence; Combustion, Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
- Krogstad, P.A.; Andersson, H.I.; Bakken, O.M.; Ashrafian, A. An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 2005, 530, 327–352. [Google Scholar] [CrossRef]
- Wang, M. Progress in data processing, engineering application and mechanism research of water flow fluctuating pressure. Adv. Sci. Technol. Water Resour. 1990, 10, 28–43. [Google Scholar]
- Singh, A.; Porte-Agel, F.; Foufoula-Georgiou, E. On the influence of gravel bed dynamics on velocity power spectra. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Eckelmann, H.; Brodkey, R.S. The wall region in turbulent shear flow. J. Fluid Mech. 1972, 54, 39–48. [Google Scholar] [CrossRef]
- Guan, D.; Agarwal, P.; Chiew, Y.-M. Quadrant Analysis of Turbulence in a Rectangular Cavity with Large Aspect Ratios. J. Hydraul. Eng. 2018, 144, 04018035. [Google Scholar] [CrossRef]
- Das, R. Respond of Bedforms to Velocity Power Spectra of Acoustic-Doppler Velocimetry Data in Rough Mobile Beds. Water Resour. 2020, 47, 835–845. [Google Scholar]
- Nie, M. Fluctuant characteristics of two-phase flow behind a bottom aerator. Sci. China Ser. E Technol. Sci. 2001, 44, 291–297. [Google Scholar] [CrossRef]
- Grass, A.J. Structural Features of Turbulent Flow over Smooth and Rough Boundaries. J. Fluid Mech. 1971, 50, 233–255. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, Y.; Jia, Y.; Jiang, N. PIV Measurements of a Turbulent Boundary Layer Perturbed by a Wall-Mounted Transverse Circular Cylinder Element. Flow Turbul. Combust. 2018, 100, 365–389. [Google Scholar] [CrossRef]
- Nolan, K.P.; Walsh, E.J.; McEligot, D.M. Quadrant analysis of a transitional boundary layer subject to free-stream turbulence. J. Fluid Mech. 2010, 658, 310–335. [Google Scholar] [CrossRef]
- Bouckaert, F.W.; Davis, J. Microflow regimes and the distribution of macroinvertebrates around stream boulders. Freshwater Biol. 1998, 40, 77–86. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1961, 13, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Shraiman, B.I.; Siggia, E.D. Scalar turbulence. Nature 2000, 405, 639. [Google Scholar] [CrossRef]
- Warhaft, Z. Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 2000, 32, 203–240. [Google Scholar] [CrossRef]
- Qureshi, N.M.; Bourgoin, M.; Baudet, C.; Cartellier, A.; Gagne, Y. Turbulent transport of material particles: An experimental study of finite size effects. Phys. Rev. Lett. 2007, 99, 184502. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, R.; Gasteuil, Y.; Bourgoin, M.; Volk, R.; Pumir, A.; Pinton, J.F. Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys. Rev. Lett. 2011, 106, 154501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case No. | Arrangement | Case Name | Width of Roughness Element b/mm | Roughness Height d/mm | Distance between Roughness Elements p/mm |
---|---|---|---|---|---|
1 | 2D square bars | 2D-sq | 30 | 8 | 60 |
2 | 3D cube chessboard | 3D-cu-c | 30 | 8 | = 60 |
3 | 3D cube stagger | 3D-cu-s | 30 | 8 | = 120 |
Case | 2D-sq | 3D-cu-c | 3D-cu-s |
---|---|---|---|
/m·s−1 | 0.0243 | 0.0241 | 0.0211 |
11.619 | 11.424 | 9.740 | |
ks/d | 2.551 | 2.374 | 1.362 |
Case and Locations | Q1 | Q2 | Q3 | Q4 | Q2 + Q4 |
---|---|---|---|---|---|
2D-sq A | 15.38% | 36.38% | 23.44% | 24.79% | 61.17% |
2D-sq B | 13.68% | 32.31% | 17.96% | 36.05% | 68.36% |
3D-cu-c A | 17.82% | 29.14% | 19.44% | 33.60% | 62.74% |
3D-cu-c B | 16.35% | 34.12% | 17.82% | 31.71% | 65.83% |
3D-cu-s A | 16.49% | 30.50% | 17.97% | 35.04% | 65.54% |
3D-cu-s B | 11.28% | 36.71% | 15.80% | 36.21% | 72.93% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Chen, Y.; Liu, Z.; Li, M. Numerical Study on the Shear Stress Characteristics of Open-Channel Flow over Rough Beds. Water 2022, 14, 1752. https://doi.org/10.3390/w14111752
Wen J, Chen Y, Liu Z, Li M. Numerical Study on the Shear Stress Characteristics of Open-Channel Flow over Rough Beds. Water. 2022; 14(11):1752. https://doi.org/10.3390/w14111752
Chicago/Turabian StyleWen, Jiaqi, Yongcan Chen, Zhaowei Liu, and Manjie Li. 2022. "Numerical Study on the Shear Stress Characteristics of Open-Channel Flow over Rough Beds" Water 14, no. 11: 1752. https://doi.org/10.3390/w14111752
APA StyleWen, J., Chen, Y., Liu, Z., & Li, M. (2022). Numerical Study on the Shear Stress Characteristics of Open-Channel Flow over Rough Beds. Water, 14(11), 1752. https://doi.org/10.3390/w14111752