Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production System and Experimental Setup
2.2. Calculation Framework and Tools
3. Results
3.1. Life Cycle Inventory (LCI)
3.2. Impact on Environmental Peformance
3.3. Impact on Economic Indicators
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, J.A.; Orsini, F.; Baeza, E.; Oztekin, G.B.; Muñoz, P.; Contreras, J.; Montero, J.I. Current trends in protected cultivation in Mediterranean climates. Eur. J. Hortic. Sci. 2018, 83, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Montesano, F.F.; van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Koukounaras, A. Advanced greenhouse horticulture: New technologies and cultivation practices. Horticulturae 2021, 7, 1. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, K.; Zhang, H.; Han, H.; Li, J. Organic vegetable cultivation reduces resource and environmental costs while increasing farmers’ income in the North China Plain. Agronomy 2020, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.; Antón, A.; Nuñez, M.; Paranjpe, A.; Ariño, J.; Castells, X.; Montera, J.I.; Rieradevall, J. Comparing the environmental impacts of greenhouse versus open-field tomato production in the Mediterranean region. In Proceedings of the Acta Horticulturae, Naples, Italy, 4–6 October 2007; Volume 801, pp. 1591–1596. [Google Scholar] [CrossRef]
- Frankowska, A.; Jeswani, H.K.; Azapagic, A. Environmental impacts of vegetables consumption in the UK. Sci. Total Environ. 2019, 682, 80–105. [Google Scholar] [CrossRef]
- FAO. Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries; FAO: Rome, Italy, 2017; ISBN 9789251096222. [Google Scholar]
- Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J. Sustainable irrigation and nitrogen management of fertigated vegetable crops. Acta Hortic. 2017, 1150, 363–378. [Google Scholar] [CrossRef]
- van Iersel, M.W.; Chappell, M.; Lea-Cox, J.D. Sensors for improved efficiency of irrigation in greenhouse and nursery production. Horttechnology 2013, 23, 735–746. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Schieffer, J.; Dillon, C. The economic and environmental impacts of precision agriculture and interactions with agro-environmental policy. Precis. Agric. 2015, 16, 46–61. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Salmoral, G.; Yan, X. Food-energy-water nexus: A life cycle analysis on virtual water and embodied energy in food consumption in the Tamar catchment, UK. Resour. Conserv. Recycl. 2018, 133, 320–330. [Google Scholar] [CrossRef]
- Vatsanidou, A.; Fountas, S.; Liakos, V.; Nanos, G.; Katsoulas, N.; Gemtos, T. Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard. Sustainability 2020, 12, 6893. [Google Scholar] [CrossRef]
- Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef] [PubMed]
- Fotia, K.; Mehmeti, A.; Tsirogiannis, I.; Nanos, G.; Mamolos, A.P.; Malamos, N.; Barouchas, P.; Todorovic, M. LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water 2021, 13, 1954. [Google Scholar] [CrossRef]
- Mehmeti, A.; Todorovic, M.; Scardigno, A. Assessing the eco-efficiency improvements of Sinistra Ofanto irrigation scheme. J. Clean. Prod. 2016, 138, 208–216. [Google Scholar] [CrossRef]
- Balafoutis, A.; Koundouras, S.; Anastasiou, E.; Fountas, S.; Arvanitis, K. Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study. Sustainability 2017, 9, 1997. [Google Scholar] [CrossRef] [Green Version]
- El Chami, D.; Knox, J.W.; Daccache, A.; Weatherhead, E.K. Assessing the financial and environmental impacts of precision irrigation in a humid climate. Hortic. Sci. 2019, 46, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Jobbágy, J.; Beloev, H.; Krištof, K.; Findura, P. The benefits and efficiency of precision irrigation. In Proceedings of the IV International Scientific and Technical Conference “Agricultural Machinery”, Varna, Bulgaria, 23–26 June 2016; Volume 2, pp. 4–12. [Google Scholar]
- Belayneh, B.E.; Lea-Cox, J.D.; Lichtenberg, E. Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery. Horttechnology 2013, 23, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, E.; Majsztrik, J.; Saavoss, M. Profitability of sensor-based irrigation in greenhouse and nursery crops. Horttechnology 2013, 23, 770–774. [Google Scholar] [CrossRef] [Green Version]
- Baptista, F.J.; Silva, L.L.; Murcho, D. Energy consumption and greenhouse gas emissions of zucchini (Cucurbita pepo L.) cultivated in hydroponic greenhouses in the western region of Portugal. Acta Hortic. 2018, 1227, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Cellura, M.; Ardente, F.; Longo, S. From the LCA of food products to the environmental assessment of protected crops districts: A case-study in the south of Italy. J. Environ. Manag. 2012, 93, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Sieverding, H.; Kebreab, E.; Johnson, J.M.F.; Xu, H.; Wang, M.; Del Grosso, S.J.; Bruggeman, S.; Stewart, C.E.; Westhoff, S.; Ristau, J.; et al. A life cycle analysis (LCA) primer for the agricultural community. Agron. J. 2020, 112, 3788–3807. [Google Scholar] [CrossRef]
- Lieder, S.; Schröter-Schlaack, C. Smart Farming Technologies in Arable Farming: Towards a Holistic Assessment of Opportunities and Risks. Sustainability 2021, 13, 6783. [Google Scholar] [CrossRef]
- Grant, T.; Cruypenninck, H.; Eady, S.; Mata, G. AusAgLCI Methodology for Developing Life Cycle Inventory AusAgLCI Methodology for Developing Life Cycle Inventory; Rural Industries Research and Development Corporation: Barton, Australia, 2014. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Rossi, V.; Humbert, S.; Lansche, J.; Mouron, P. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Quantis and Agroscope, Lausanne and Zurich: Lausanne, Switzerland, 2020. [Google Scholar]
- GreenDelta openLCA 1.10.3 Green Delta GmbH, Germany. Available online: https://www.openlca.org/download/ (accessed on 15 September 2021).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Ecoinvent Database 3.1. Ecoinvent Cent. 2014. Available online: https://www.ecoinvent.org/database/ecoinvent-371/ecoinvent-371.html (accessed on 15 September 2021).
- Canaj, K.; Mehmeti, A.; Berbel, J. The economics of fruit and vegetable production irrigated with reclaimed water incorporating the hidden costs of life cycle environmental impacts. Resources 2021, 10, 90. [Google Scholar] [CrossRef]
- Olba-Zięty, E.; Stolarski, M.J.; Krzyżaniak, M.; Gołaszewski, J. Environmental external cost of poplar wood chips sustainable production. J. Clean. Prod. 2020, 252, 119854. [Google Scholar] [CrossRef]
- Baaqel, H.; Díaz, I.; Tulus, V.; Chachuat, B.; Guillén-Gosálbez, G.; Hallett, J.P. Role of life-cycle externalities in the valuation of protic ionic liquids-a case study in biomass pretreatment solvents. Green Chem. 2020, 22, 3132–3140. [Google Scholar] [CrossRef]
- Notarnicola, B.; Salomone, R.; Petti, L.; Renzulli, P.; Roma, R.; Cerutti, A. Life Cycle Assessment in the Agri-Food Sector; Danish Institute of Agricultural Sciences: Slagelse, Denmark, 2015; ISBN 978-3-319-11939-7. [Google Scholar]
- Pelletier, N. Life Cycle Thinking, Measurement and Management for Food System Sustainability. Environ. Sci. Technol. 2015, 49, 7515–7519. [Google Scholar] [CrossRef]
- Sala, S.; Reale, F.; Cristobal-Garcia, J.; Pant, R.; European Commission, Joint Research Centre. Life Cycle Assessment for the Impact Assessment of Policies; European Commission: Ispra, Italy, 2016; ISBN 9789279648137. [Google Scholar]
- Finco, A.; Bucci, G.; Belletti, M.; Bentivoglio, D. The economic results of investing in precision agriculture in durum wheat production: A case study in central Italy. Agronomy 2021, 11, 1520. [Google Scholar] [CrossRef]
LCC Cost | LCC Component | LCC Sub-Component |
---|---|---|
Internal | Cost of raw materials used in crop production | Water, energy, fertilizers, pesticides, machinery, investment, etc. |
External | Cost of various environmental effects | Water consumption, toxicity, Acidification (grams of SO2, NOX, and NH3), eutrophication (grams of NOX and NH3), land use (m2/year), or other measurable impacts |
Input | Amount | Unit |
---|---|---|
Irrigation Water | 0.4 | €/m3 |
Electricity | 0.12 | €/kWh |
Urea | 0.39 | €/kg |
Ammonium sulphate | 0.26 | €/kg |
Calcium nitrate | 0.37 | €/kg |
Phosphorus fertilizer | 0.27 | €/kg |
Potassium fertilizer | 0.55 | €/kg |
Diesel Fuel | 0.85 | €/kg |
Machinery | 15 | €/hour |
Lubricating Oil | 5 | €/liter |
Investment cost DSS irrigation | 3000 | €/ha |
Investment cost sensor-based | 3500 | €/ha |
Parameter | Unit | Farmer-Led Irrigation | Cloud-Based DSS Irrigation | Sensor-Based Irrigation |
---|---|---|---|---|
Seeds | kg/ha | 320 | 320 | 320 |
Crop Yield | ton/ha | 30.5 | 30.5 | 30.5 |
Gross irrigation supply | m3/ha | 3500 | 2174 | 2160 |
Water consumption | m3/ha | 2021.8 | 1956.6 | 1944 |
Energy consumption | kWh/ha | 1120 | 696 | 691.1 |
Total N-fertilizer | kg N/ha | 135 | 135 | 135 |
Urea | kg N/ha | 200 | 200 | 200 |
Ammonium sulfate | kg N/ha | 100 | 100 | 100 |
Calcium nitrate | kg N/ha | 140 | 140 | 140 |
P-fertilizer | kg P2O5/ha | 80 | 80 | 80 |
K-fertilizer | kg K2O/ha | 100 | 100 | 100 |
Ammonia | kg NH3/ha | 16.35 | 16.35 | 16.35 |
Dinitrogen monoxide | kg N2O/ha | 5.13 | 5.13 | 5.13 |
Nitrogen oxides | kg NOX/ha | 0.93 | 0.93 | 0.93 |
Nitrates | kg NO3/ha | 177.6 | 59.21 | 59.21 |
Name | Unit | Farmer Irrigation | Cloud-Based DSS Irrigation | Sensor-Based Irrigation |
---|---|---|---|---|
Midpoint | ||||
Fine particulate matter formation | kg PM2.5 eq | 10.45 | 10.43 | 10.42 |
Fossil resource scarcity | kg oil eq | 36.24 | 32.66 | 32.62 |
Freshwater ecotoxicity | kg 1,4-DCB | 83.07 | 82.96 | 82.91 |
Freshwater eutrophication | kg P eq | 0.02 | 0.01708 | 0.01706 |
Global warming | kg CO2 eq | 785.62 | 770.46 | 770.45 |
Human carcinogenic toxicity | kg 1,4-DCB | 2.13 | 1.965 | 1.963 |
Human non—carcinogenic toxicity | kg 1,4-DCB | 40.82 | 38.187 | 38.183 |
Ionizing radiation | kBq Co-60 eq | 7.66 | 5.693 | 5.685 |
Land use | m2a crop eq | 214.41 | 214.35 | 214.21 |
Marine ecotoxicity | kg 1,4-DCB | 2.28 | 2.063 | 2.06 |
Marine eutrophication | kg N eq | 0.46 | 0.1763 | 0.1761 |
Mineral resource scarcity | kg Cu eq | 0.60 | 0.5992 | 0.5985 |
Ozone formation, Human health | kg NOx eq | 0.55 | 0.53 | 0.5285 |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 1.04 | 0.985 | 0.983 |
Stratospheric ozone depletion | kg CFC11 eq | 0.0021 | 0.001972 | 0.00197 |
Terrestrial acidification | kg SO2 eq | 1.43 | 1.373 | 1.37 |
Terrestrial ecotoxicity | kg 1,4-DCB | 150.76 | 140.28 | 140.28 |
Water consumption | m3 | 375.42 | 373.18 | 372.77 |
Endpoint | ||||
Human Health | DALY | 1.49 × 10−3 | 1.302 × 10−3 | 1.299 × 10−3 |
Ecosystems | species.yr | 6.71 × 10−6 | 5.705 × 10−6 | 5.69 × 10−6 |
Resources | USD2013 | 10.25 | 9.103 | 9.09 |
Scenario | Farmer-Led Irrigation | Cloud-Based DSS Irrigation | Sensor-Based Irrigation |
---|---|---|---|
Baseline | 107.3 (431.3) | 103.2 (422.2) | 105.7 (424.3) |
Water Cost = 0.6 EUR/m3 | 130.9 (450) | 117.8 (436.8) | 120.2 (438.8) |
Internal rate of return = 5% | 107.3 (431.3) | 99.9 (418.9) | 101.8 (420.4) |
Internal rate of return = 15% | 107.3 (431.3) | 106.7 (425.7) | 109.8 (428.4) |
Investment cost = +20% | 107.3 (431.3) | 106.4 (425.4) | 109.4 (428) |
Investment cost = −20% | 107.3 (431.3) | 100 (419) | 101.9 (420.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canaj, K.; Parente, A.; D’Imperio, M.; Boari, F.; Buono, V.; Toriello, M.; Mehmeti, A.; Montesano, F.F. Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis. Water 2022, 14, 6. https://doi.org/10.3390/w14010006
Canaj K, Parente A, D’Imperio M, Boari F, Buono V, Toriello M, Mehmeti A, Montesano FF. Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis. Water. 2022; 14(1):6. https://doi.org/10.3390/w14010006
Chicago/Turabian StyleCanaj, Kledja, Angelo Parente, Massimiliano D’Imperio, Francesca Boari, Vito Buono, Michele Toriello, Andi Mehmeti, and Francesco Fabiano Montesano. 2022. "Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis" Water 14, no. 1: 6. https://doi.org/10.3390/w14010006
APA StyleCanaj, K., Parente, A., D’Imperio, M., Boari, F., Buono, V., Toriello, M., Mehmeti, A., & Montesano, F. F. (2022). Can Precise Irrigation Support the Sustainability of Protected Cultivation? A Life-Cycle Assessment and Life-Cycle Cost Analysis. Water, 14(1), 6. https://doi.org/10.3390/w14010006