Effect of Performance of Water Stashes Irrigation Approaches on Selected Species of Plant’s Water Productivity in Urban Rooftop Agriculture with Respect to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Plot Setup
2.2. Green Water Harvesting
2.3. Analysis of Irrigation Water Quality of Harvesting Green Water
2.4. Soil Preparation and Measurement of Soil Moisture and Temperature in the Experimental Plot
2.5. Irrigation Forecast
2.6. Performance Measurement of Irrigation in URTA
2.6.1. Distribution Efficiency
2.6.2. Application Efficiency
2.6.3. Field Emission Uniformity (EUf)
2.6.4. Absolute Emission Uniformity
2.6.5. Co-Efficient of Variance (CV)
2.6.6. Irrigation Water Productivity
3. Results and Discussion
3.1. Soil Physical Characteristics in URTA
3.2. Temperature in URTA under Drip Irrigation and Bare Roof without Irrigation Approach
3.3. Irrigation Water Requirement of Tomato, Bringal, Chili and Bottle Gourd in URTA under Drip Irrigation and Traditional Irrigation Approach
3.4. Moisture Content Dynamics in URTA under Drip Irrigation and Traditional Irrigation Approach
3.5. Yield of Different Crops in URTA
3.6. Irrigation Water Productivity (IWP) in URTA
3.7. Irrigation Performance of Drip Irrigation System in URTA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, M.A.H.; Manzoor, M.M.; Mukter, S. Urbanization and Its Effects on Water Resources: An Exploratory Analysis. Asian J. Water Environ. Pollut. 2018, 15, 67–74. [Google Scholar] [CrossRef]
- Adeboye, O.B.; Schultz, B.; Adekalu, K.O.; Prasad, K. Crop Water Productivity and Economic Evaluation of Drip-Irrigated Soybeans (Glyxine max L. Merr.). Agric Food Secur. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Arfanuzzaman, M.; Rahman, A.A. Sustainable Water Demand Management in the Face of Rapid Urbanization and Ground Water Depletion for Social-Ecological Resilience Building. Int. J. Glob. Ecol. Conserv. 2017, 10, 9–22. [Google Scholar] [CrossRef]
- Ishtiaque, A.T.; Tasin, T.Z.; Akter, K.S. Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong. Int. J. Urban Civ. Eng. 2017, 11, 37–42. [Google Scholar]
- Gohil, K.; Jin, M.S. Validation and Improvement of the WRF Building Environment Parametrization (BEP) Urban Scheme. Climate 2019, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Heusinger, J.; Sailor, D.J.; Weber, S. Modeling the Reducti on of Urban Excess Heat by Green Roofs with Respect to Different Irrigation Scenarios. Build Environ. 2018, 131, 174–183. [Google Scholar] [CrossRef]
- Begum, M.S.; Bala, S.K.; Islam, A.K.M.S.; Roy, D. Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change. Sustainability 2021, 13, 9053. [Google Scholar] [CrossRef]
- Corburn, J. Cities, Climate Change, and Urban Heat Island Mitigation: Localizing Global Environmental Science. Urban Stud. 2009, 46, 413–427. [Google Scholar] [CrossRef]
- Mainuddin, M.; Kirby, M. National Food Security in Bangladesh to 2050. Food Sec. 2015, 7, 633–646. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects; The 2014 Revisions; Department of Economic and Social Affairs: Population Division, NY, USA, 2014; p. 27. [Google Scholar]
- Wang, H.; Liu, Y.; Zhang, G.; Wang, Y.; Zhao, J. Multi-Scenario Simulation of Urban Growth Under Integrated Urban Spatial Planning: A Case Study of Wuhan, China. Sustainability 2021, 13, 11279. [Google Scholar] [CrossRef]
- Zezza, A.; Tasciotti, L. Urban Agriculture, Poverty, and Food Security: Empirical Evidence from a Sample of Developing Countries. Food Policy 2010, 35, 265–273. [Google Scholar] [CrossRef]
- Gilliom, R.L.; Bell, C.D.; Hogue, T.S.; McCray, J.E. A Rainwater Harvesting Accounting Tool for Water Supply Availability in Colorado. Baseline Study on Rooftop Gardening in Dhaka and Chittagong city of Bangladesh, Final report, Food and Agriculture Organization, Bangladesh (2016). Water 2019, 11, 2205. [Google Scholar] [CrossRef]
- Zhang, S.; Rasool, G.; Guo, X.; Sen, L.; Cao, K. Effects of Different Irrigation Methods on Environmental Factors, Rice Production, and Water Use Efficiency. Water 2020, 12, 2239. [Google Scholar] [CrossRef]
- Rahman, M.M.; Quayum, S. Sustainable Water Supply in Dhaka City: Present and Future; Research Gate, Conference Paper; The Japan Science and Technology Agency: Bangkok, Thailand, 2008. [Google Scholar]
- Loux, J.; Skonovd, R.W.; Gellerman, E. Evaluation of Combined Rainwater and Greywater Systems for Multiple Development Types in Mediterranean climates. J. Water Sustain. 2012, 2, 55–77. [Google Scholar]
- Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring Rooftop Rainwater Harvesting Potential for Food Production in Urban Areas. Agriculture 2017, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and Blue Water Footprint Reduction in Irrigated Agriculture: Effect of Irrigation Techniques, Irrigation Strategies and Mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef] [Green Version]
- FAO. Rooftop Water Collection, Drip Irrigation and Plastic Mulching in Home Garden Conditions in Drought Prone Areas of Cambodia; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; pp. 1–14. [Google Scholar]
- Uddin, M.J.; Khondaker, N.A.; Das, A.K.; Hossain, M.E.; Masud, A.D.H.; Chakma, A.S.; Nabila, N.A.; Saikat, M.I.; Chowdhury, A.A. Baseline Study On Roof Top Gardening in Dhaka and Chittagong City Of Bangladesh Enhancing Urban Horticulture Production to Improve Baseline Study on Roof Top Gardening in Dhaka Enhancing Urban Horticulture Production to Improve Food and Nutrition Security; FAO Representation: DHAKA, Bangladesh, 2016. [Google Scholar]
- Lupia, F.; Pulighe, G. Water Use and Urban Agriculture: Estimation and Water Saving Scenarios for Residential Kitchen Gardens. Agric. Agric. Sci. Procedia 2015, 4, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kanamu, J.K. The Effect of Irrigation Management on Crop Water Requirement and Crop Water Productivity of Tomato and Sweet Corn in Kibwezi, Kenya. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2009. [Google Scholar]
- Nasir, J.; Ashfaq, M.; Baig, I.A.; Punthakey, J.F.; Culas, R.; Ali, A.; Hassan, F.U. Socioeconomic Impact Assessment of Water Resources Conservation and Management to Protect Groundwater in Punjab, Pakistan. Water 2021, 13, 2672. [Google Scholar] [CrossRef]
- Russo, T.; Alfredo, K.; Fisher, J. Sustainable Water Management in Urban, Agricultural, and Natural Systems. Water 2014, 6, 3934–3956. [Google Scholar] [CrossRef] [Green Version]
- Salama, M.A.A. Estimating Water Consumptive Use for Some Crops under Stress Conditions Using Neutron Scattering in Agricultural Science (Soil Science) Estimating Water Consumptive Use for Some Crops under Stress Conditions Using Neutron Scattering; International Atomic Energy Agency (IAEA): Vienna, Austria, 2011. [Google Scholar]
- Birol, E.; Karousakis, K.; Koundouri, P. Using Economic Valuation Techniques to Inform Water Resources Management: A Survey and Critical Appraisal of Available Techniques and an Application. Sci. Total Environ. 2006, 365, 105–122, 2006. [Google Scholar] [CrossRef] [PubMed]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- FAO. Baseline Study on Rooftop Gardening in Dhaka and Chittagong City of Bangladesh; Final Report; Food and Agriculture Organization: Dhaka, Bangladesh, 2016. [Google Scholar]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of Reclaimed Waste Water Irrigation on Soil and Tomato Fruits: A Case Study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Martin, G.; Clift, R.; Christie, I. Urban Cultivation and Its Contributions to Sustainability: Nibbles of Food But Oodles of Social Capital. Int. J. Sustain. 2016, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving Agricultural Water Productivity: Between Optimism and Caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Wang, F.X.; Wu, X.X.; Shock, C.C.; Chu, L.Y.; Gu, X.X.; Xue, X. Effects of Drip Irrigation Regimes on Potato Tuber Yield and Quality under Plastic Mulch in Arid Northwestern China. Field Crop. Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- Arya1, C.K.; Purohit, R.C.; Dashora, L.K.; Singh, P.K.; Kothari, M. Performance Evaluation of Drip Irrigation Systems. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2287–2292. [Google Scholar]
- Venot, J.P. A Success of Some Sort: Social Enterprises and Drip Irrigation in the Developing World. World Dev. 2016, 79, 69–81. [Google Scholar] [CrossRef]
- Payero, J.O.; Tarkalson, D.D.; Irmak, S.; Davison, D.; Petersen, J.L. Effect of Irrigation Amounts Applied with Subsurface Drip Irrigation on Corn Evapotranspiration, Yield, Water Use Efficiency, and Dry Matter Production in a Semiarid Climate. Agric. Water Manag. 2008, 95, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Merriam, J.L. Irrigation Performance Measures: Efficiency and Uniformity. J. Irrig. Drain. Eng. 1999, 125, 100–103. [Google Scholar] [CrossRef]
- Martínez, J.; Reca, J. Water Use Efficiency of Surface Drip Irrigation Versus an Alternative Subsurface Drip Irrigation Method. J. Irrig. Drain. Eng. 2014, 140, 1–9. [Google Scholar] [CrossRef]
- Yang, L.I.U.; YANG, H.S.; LI, J.S.; LI, Y.F.; YAN, H.J. Estimation of irrigation requirements for drip-irrigated maize in a sub-humid climate. J. Integr. Agric. 2018, 17, 677–692. [Google Scholar] [CrossRef]
- Al-Mhmdy, S.M.; Al-Dulaimy, S.E.H. Performance Evaluation of Drip Irrigation System According To The Suggested Standards. Iraqi J. Agric. Sci. 2018, 49, 1099–1109. [Google Scholar]
- Parameshwarareddy, R.; Angadi, S.S.; Biradar, M.S.; Patil, R.H. Water Productivity of Tomato as Influenced by Drip Irrigation Levels and Substrates. J. Pharmacogn. Phytochem. 2018, 7, 1343–1346. [Google Scholar]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the Effects of Soil Moisture Sensors Positioning and Accuracy on Soil Moisture-Based Drip Irrigation Scheduling Systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- BARI. Krishi Projukti Hat Boi (Handbook on Argo-Technology), 7th ed.; Bangladesh Agricultural Research Institute: Gazipur, Bangladesh, 2017. [Google Scholar]
- Compton, M.E. Statistical Methods Suitable for the Analysis of Plant Tissue Culture Data. Plant Cell Tiss Organ Cult 1994, 37, 217–242. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K.X. Performance Evaluation of a Recently Developed Soil Water Content, Dielectric Permittivity, and Bulk Electrical Conductivity Electromagnetic Sensor. Agric. Water Manag. 2019, 213, 568–579. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Malik, A.; Maroufpoor, S. Modeling Long-Term Dynamics of Crop Evapotranspiration Using Deep Learning in a Semi-Arid Environment. Agric. Water Manag. 2020, 241, 106334. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Y.; Lei, T.; Pereira, L.S. Estimating Reference Evapotranspiration with the FAO Penman–Monteith Equation Using Daily Weather Forecast Messages. Agric. For. Meteorol. 2007, 145, 22–35. [Google Scholar] [CrossRef]
- Heermann, D.F.; Wallender, W.W.; Bos, M.G. Irrigation Efficiency and Uniformity. In Management of Farm Irrigation Systems; Hoffman, G.J., Howell, T.A., Solomon, K.H., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1990. [Google Scholar]
- Grun, P.; Hefty, S.; Sur, S.; Goodell, D.; Russel, R.D.; Pritchard, H. A Brief Introduction to the Open Fabrics Interfaces-A New Network API for Maximizing High Performance Application Efficiency. In Proceedings of the 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, Santa Clara, CA, USA, 26–28 August 2015; pp. 34–39. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Zhang, Q. Trade-Off between Soil pH, Bulk Density and Other Soil Physical Properties under Global No-tillage Agriculture. Geoderma 2020, 361, 114099. [Google Scholar] [CrossRef]
- Chimonyo, V.G.P.; Modi, A.T. Seed Performance of Selected Bottle Gourd (Lagenaria siceraria (Molina) Standl.). J. Exp. Agric. Int. 2013, 3, 740–766. [Google Scholar] [CrossRef] [Green Version]
- Begum, S.; Akhand, A.A.; Roy, D. Contamination of Agricultural Land by Arsenic from Irrugated Water. In Proceedings of the 4th International Conference on Water and Flood Management (ICWFM 2013), Dhaka, Bangladesh, 9–11 March 2013. [Google Scholar]
- Reyes-Cabrera, J.; Zotarelli, L.; Dukes, M.D.; Rowland, D.L.; Sargent, S.A. Soil Moisture Distribution under Drip Irrigation and Seepage for Potato Production. Agric. Water Manag. 2016, 169, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Theivasigammi, P.; Kothan, V.; Mohandas, S.; Vered, E. Evaluation of Drip Irrigation System for Water Productivity and Yield of Rice. Agron. J. 2018, 110, 2378–2389. [Google Scholar]
- Maris, S.C.; Teira-Esmatges, M.R.; Arbonés, A.; Rufat, J. Effect of Irrigation, Nitrogen Application, and a Nitrification Inhibitor on Nitrous Oxide, Carbon Dioxide and Methane Emissions from an Olive (Olea europaea L.) Orchard. Sci. Total Environ. 2015, 538, 966–978. [Google Scholar] [CrossRef] [PubMed]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todovic, M.; Mladen, T.M.; Scardigno, A. Improving Water-Efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Yaghi, T.; Arslan, A.; Naoum, F. Cucumber (Cucumis sativus, L.) Water Use Efficiency (WUE) under Plastic Mulch and Drip Irrigation. Agric. Water Manag. 2013, 128, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Danso, E.O.; Abenney-Mickson, S.; Sabi, E.B.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.O.; Jensen, C.R.; Andersen, M.N. Effect of Different Fertilization and Irrigation Methods on Nitrogen Uptake, Intercepted Radiation and Yield of Okra (Abelmoschus Esculentum L.) Grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2015, 147, 34–42. [Google Scholar] [CrossRef]
- Ortega-Reig, M.; SanchisIbor, C.; Palau-Salvador, G.; García-Mollá, M.; Avellá-Reus, L. Institutional and Management Implications of Drip Irrigation Introduction in Collective Irrigation Systems in Spain. Agric. Water Manag. 2017, 187, 164–172. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
Sample Collecting Date | pH | EC (µs/cm) | TDS (mg/L) | As (ppb) | Fe (mg/L) | Cl (mg/L) | Na (meq/L) | Total Alkalinity (mg/L) | Total Hardness (mg/L) | NO3−_N (mg/L) | PO4 (mg/L) | SO4 (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7 October 2019 | 7.9 | 826 | 413 | 0 | 0.01 | 85 | 1.00 | 280 | 200 | 0 | 1.87 | 52 |
17 October 2019 | 7.8 | 658 | 311 | 0 | 0 | 80 | 1.98 | 260 | 185 | 0 | 2.3 | 70 |
14 November 2019 | 7.4 | 912 | 457 | 0 | 0 | 160 | 3.72 | 340 | 264 | 6 | 0.8 | 50 |
30 November 2019 | 7.4 | 914 | 470 | 0 | 0 | 112 | 1.30 | 320 | 136 | 4 | 0.6 | 95 |
15 January 2020 | 7.7 | 736 | 368 | 0 | 0 | 100 | 1.00 | 300 | 220 | 3 | 0.2 | 60 |
2 February 2020 | 7.4 | 823 | 413 | 0 | 0 | 85 | 1.20 | 240 | 105 | 4 | 0.6 | 90 |
17 February 2020 | 7.9 | 826 | 398 | 0 | 0 | 88 | 1.00 | 320 | 230 | 3 | 0.4 | 80 |
3 March 2020 | 7.6 | 738 | 420 | 0 | 0 | 95 | 1.40 | 280 | 180 | 5 | 0.6 | 60 |
20 March 2020 | 7.2 | 623 | 311 | 0 | 0 | 86 | 1.20 | 270 | 153 | 4 | 0.8 | 90 |
Item Name | Value in (%) |
---|---|
Moisture content of soil before adding water | 19.80% |
Moisture content of wet soil or field capacity of soil | 33.58% |
Soil texture | Silt loam (sand-9%, silt-78% and clay-13%) |
pH of soil | Strongly acidic (5.5) |
Organic matter | Low (1.40%) |
Total Nitrogen (N) | Very low (0.070%) |
Potassium (K) | 1.32 meq/100 g soil (very high) |
Calcium (Ca) | 7.32 meq/100 g soil (very high) |
Magnesium (Mg) | 7.00 meq/100 g soil (very high) |
Phosphorus (P) | 78.93 µg/g (ppm) (very high) |
Sulphur (S) | 143.89 µg/g (ppm) (very high) |
Boron (B) | 0.77 µg/g (ppm) (very high) |
Copper© | 2.28 µg/g (ppm) (very high) |
Iron (I) | 45.16 µg/g (ppm) |
Manganese (Mn) | 13.29 µg/g (ppm) (very high) |
Zink (Z) | 4.47 µg/g (ppm) (very high) |
Bulk density of prepared soil | 1.04 gm/cm3 |
Crop’s Name | The Moisture Content before Irrigation (%) | The Moisture Content after Irrigation (%) | ||||||
---|---|---|---|---|---|---|---|---|
5 cm | 15 cm | 30 cm | 45 cm | Top | 15 cm | 30 cm | 45 cm | |
Bottle Gourd | 26.3 | 23 | 20 | 19.9 | 30.8 | 25.3 | 22.5 | 20.32 |
BARI Tomato 3 | 28.2 | 20 | 21 | 20 | 31.34 | 26.4 | 24 | 22 |
BARI Hybrid Brinjal | 26.4 | 22 | 20 | 19 | 31.5 | 26.8 | 21 | 19 |
Bogra local chili | 26.7 | 22 | 21 | 21 | 33 | 28.5 | 25 | 22 |
Stage | KCb | KCbr | KCt | KCch |
---|---|---|---|---|
Initial stage | 0.7 | 0.42 | 0.46 | 0.3 |
Vegetative | 1.5 | 0.8 | 0.83 | 0.6 |
Flowering stage | 1.7 | 1.3 | 1.08 | 0.95 |
Ripening stage | 1.4 | 0.93 | 0.86 | 0.8 |
Month | Rainfall (mm) | Eto (mm/day) |
---|---|---|
November | 20 | 3.71 |
December | 10 | 2.58 |
January | - | 3.01 |
February | 45 | 3.61 |
March | 45 | 4.83 |
April | 215 | 5.89 |
May | 295 | 6.49 |
Stage | IWR (mm) for Rooftop Agriculture | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BARI Tomato-3 | BARI Bottle Gourd-3 | BARI Brinjal-8 | Bogra Local Chili | |||||||||
DI | TI (Pipe) | TI (Container) | DI | TI (Pipe) | TI (Container) | DI | TI (Pipe) | TI (Container) | DI | TI (Pipe) | TI (Container) | |
Initial | 76 | 145 | 95 | 94 | 185 | 140 | 68 | 100 | 120 | 63 | 121 | 106 |
Vegetative | 125 | 350 | 180 | 245 | 578 | 220 | 153 | 200 | 450 | 125 | 285 | 161 |
Flowering | 236 | 520 | 320 | 336 | 965 | 600 | 471 | 600 | 860 | 416 | 1020 | 641 |
Ripening | 290 | 1000 | 750 | 419 | 2680 | 1500 | 361 | 600 | 1000 | 186 | 450 | 241 |
Total | 726 | 2015 | 1345 | 1093 | 4408 | 2460 | 1053 | 1500 | 2430 | 790 | 1875 | 1148 |
Total IWR for land according to BARI | 350–425 mm | 320–350 mm | 361 mm | 290–340 mm |
Exp. Status | Name of Crops | Source of Water | Drip Irrigation | Traditional Method | ||||
---|---|---|---|---|---|---|---|---|
Average Yield/Plant (kg) | Total Irrigation Water Used (mm) | Average Yield/Plant (kg) | Total Irrigation Water Used/Plant (mm) by Container | Total Irrigation Water Used (mm) by Pipe and Pipe with Shower | ||||
1st_year experiment | Winter season | BARI Tomato-3 | Ground water | 2.35 | 726 | 1.92 | 1345 | 2015 |
BARI Bringle-8 | 2.1 | 1053 | 1.8 | 1500 | 2430 | |||
BARI Bottle Gourd-3 | 6.5 | 1093 | 3.5 | 2460 | 4408 | |||
Bogra Red Chili | 0.65 | 790 | 0.4 | 1148 | 1875 | |||
Summer season | BARI Tomato-4 | 0.85 | 511 | 0.7 | 721 | 946 | ||
BARI Bottle Gourd-4 | 4.8 | 1013 | 4.5 | 1246 | 1579 | |||
2nd_year experiment | Winter season | BARI Tomato-3 | Green water | 2.4 | 612 | 1.8 | 1024.64 | 1434 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, M.S.; Kumar Bala, S.; Saiful Islam, A.K.M. Effect of Performance of Water Stashes Irrigation Approaches on Selected Species of Plant’s Water Productivity in Urban Rooftop Agriculture with Respect to Climate Change. Water 2022, 14, 7. https://doi.org/10.3390/w14010007
Begum MS, Kumar Bala S, Saiful Islam AKM. Effect of Performance of Water Stashes Irrigation Approaches on Selected Species of Plant’s Water Productivity in Urban Rooftop Agriculture with Respect to Climate Change. Water. 2022; 14(1):7. https://doi.org/10.3390/w14010007
Chicago/Turabian StyleBegum, Musammat Shahinara, Sujit Kumar Bala, and A. K. M. Saiful Islam. 2022. "Effect of Performance of Water Stashes Irrigation Approaches on Selected Species of Plant’s Water Productivity in Urban Rooftop Agriculture with Respect to Climate Change" Water 14, no. 1: 7. https://doi.org/10.3390/w14010007
APA StyleBegum, M. S., Kumar Bala, S., & Saiful Islam, A. K. M. (2022). Effect of Performance of Water Stashes Irrigation Approaches on Selected Species of Plant’s Water Productivity in Urban Rooftop Agriculture with Respect to Climate Change. Water, 14(1), 7. https://doi.org/10.3390/w14010007