Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Datasets and Data Pre-Processing
2.3. NADI Formulation for the Luvuvhu River Catchment
2.4. Drought Statistical Analysis
2.4.1. Variable of Importance
2.4.2. Trend Analysis
2.4.3. Sequential Mann-Kendall Test and Theil-Sen Trend Estimator
2.5. Wavelet Analysis
3. Results
3.1. Exploratory Data Analysis
3.2. NADI Drought Analysis
3.3. Correlation Statistics
3.4. NADI Trends and Their Significance
3.5. Wavelet Analysis
4. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A.; Sivakumar, M.V.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather. Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Graham, S. Drought: The Creeping Disaster. 2000. Available online: http://earthobservatory.nasa.gov/Features/DroughtFacts/ (accessed on 8 October 2018).
- Usman, M.T.; Reason, C.J.C. Dry spell frequency and their variability over southern Africa. Clim. Res. 2004, 26, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. Drought modeling–A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawang, S.; Thianpopirug, S. Comparing the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model. Hydrol. Earth Syst. Sci. 2016, 20, 3361–3377. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Liu, Y. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. J. Hydrol. 2015, 531, 1129–1140. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; Wang, A.; De Maeyer, P. The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sens. 2018, 10, 468. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; Sheffield, J. Soil Moisture–Evapotranspiration Coupling in CMIP5 Models: Relationship with Simulated Climate and Projections. J. Clim. 2018, 31, 4865–4878. [Google Scholar] [CrossRef]
- Gleick, P.H. Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 2014, 6, 331–340. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration of time scales. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–23 January 1993; pp. 179–186. [Google Scholar]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought timescales across global land biomes. Proc. Natl. Acad. Sci. USA 2012, 110, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research Paper. 45; U.S. Weather Bureau: Washington, DC, USA, 1965; p. 58.
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In Proceedings of the Western Snow Conference, Colorado State University, Fort Collins, CO, USA, April 1982; pp. 164–175. Available online: https://westernsnowconference.org/node/932 (accessed on 13 December 2021).
- Keyantash, J.A.; Dracup, J.A. An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 2004, 40, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Al Balasmeh, O.; Babbar, R.; Karmaker, T. A hybrid drought index for drought assessment in Wadi Shueib catchment area in Jordan. J. Hydroinform. 2020, 22, 4. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate standardised drought index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhou, L.; Huang, S. A hybrid drought index combining meteorological, hydrological and agricultural information based on the entropy weight theory. Arab. J. Geosci. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Barua, S. Drought Assessment and Forecasting Using a Nonlinear Aggregated Drought Index. Ph.D. Thesis, Victoria University, Melbourne, Australia, 2010. [Google Scholar]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.; Kanae, S.; Kowalczyk, E.; Lawrence, D. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Am. Meteorol. Soc. 2013, 95, 861–882. [Google Scholar] [CrossRef]
- Dai, A.; Trenbert, K.E.; Qian, T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydromet. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Furnari, L.; Senatore, A.; De Rango, A.; De Biase, M.; Straface, S.; Mendicino, G. Asynchronous cellular automata subsurface flow simulations in two- and three-dimensional heterogeneous soils. Adv. Water Resour. 2021, 153, 1–14. [Google Scholar] [CrossRef]
- Lopes, D.; Estumano, D.; Macêdo, E.; Quaresma, J. A solution for the Richards equation in layered soil profiles with a single domain approach. Águas Subterrâneas 2021, 35, 1–11. [Google Scholar] [CrossRef]
- De Luca, D.L.; Cepeda, J.M. Procedure to obtain analytical solutions of one-dimensional Richards’ equation for infiltration in two-layered soils. J. Hydrol. Eng. 2016, 21, 04016018. [Google Scholar] [CrossRef]
- Ford, T.W.; Harris, E.; Quiring, S.M. Estimating root zone soil moisture using near-surface observations from SMOS. Hydrol. Earth Syst. Sci. 2014, 18, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Hardisky, M.; Klemas, V.; Smart, M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina Alterniflora canopies. Photogramm. Eng. Remote. Sens. 1983, 48, 77–84. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.; Partyka, G.S. Land surface precipitation in MERRA-2. J. Clim. 2016, 30, 1643–1664. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R.; Nkuna, T.R. Long-term changes and variability in rainfall and streamflow in Luvuvhu River Catchment, South Africa. S. Afr. J. Sci. 2015, 111, 9. [Google Scholar] [CrossRef]
- Mzezewa, J.; Misi, T.; van Rensberg, L.D. Characterisation of rainfall at a semi-arid ecotope in the Limpopo Province (South Africa and its implication for sustainable crop production. Water SA 2010, 36, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Shukla, J.; Mintz, Y. Influence of land surface évapotrans piration on the Earth’s climate. Science 1982, 215, 1498–1501. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.; Middleton, E.M.; Huemmrich, K.F.; et al. The seasonal 572 cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation 573 phenology and ecosystem atmosphere carbon exchange. Remote. Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Mbatha, N.; Xulu, S. Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought. Climate 2018, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Barua, S.; Ng, A.W.M.; Perera, B.J.C. Drought assessment and forecasting: A case study on the Yarra River catchment in Victoria, Australia. Aust. J. Water Resour. 2012, 15, 95–108. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional Variable Importance for Random Forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112, p. 18. [Google Scholar]
- Meshram, A.; Rai, B. User-Independent Detection for Freezing of Gait in Parkinson’s Disease Using Random Forest Classification. Int. J. Big Data Anal. Healthc. 2019, 4, 57–72. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Bauer, E.; Kohavi, R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Bühlmann, P.; Yu, B. Analyzing Bagging. Ann. Stat. 2002, 30, 927–961. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Pal, I.; Al-Tabbaa, A. Trends in seasonal precipitation extremes–An indicator of ‘climate change’ in Kerala, India. Trends in seasonal precipitation extremes–An indicator of ‘climate change’ in Kerala, India. J. Hydrol. 2009, 367, 62–69. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V. Trend Analysis of Rainfall and Temperature Data for India. Curr. Sci. 2012, 102, 37–49. [Google Scholar]
- Raj, P.P.; Azeez, P.A. Trend analysis of rainfall in Bharathapuzha River basin, Kerala, India. Int. J. Climatol. 2012, 32, 533–539. [Google Scholar] [CrossRef]
- Jain, V.K.; Rivera, L.; Zaman, K.; Espos, R.A.; Sirivichayakul, C.; Quiambao, B.P.; Rivera-Medina, D.M.; Kerdpanich, P.; Ceyhan, M.; Ener, C.; et al. Vaccine for prevention of mild and moderate-to-severe influenza in children. N. Engl. J. Med. 2013, 369, 2481–2491. [Google Scholar] [CrossRef]
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. 2018. Available online: https://cran.r-project.org/web/packages/trend/trend.pdf (accessed on 27 July 2018).
- Sneyers, S. On the Statistical Analysis of Series of Observations; Technical note no. 143, WMO No. 725 415; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1990; p. 192. [Google Scholar]
- Clark, I. Practical Geostatistics; Applied Science Publishers: London, UK, 1979. [Google Scholar]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Zelenˇáková, M.; Purcz, P.; Blišt’an, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Dordrecht, The Netherlands, 1992; pp. 386–392. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Statist. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of Prewhitening to Eliminate the Influence of Serial Correlation on the Mann-Kendall Test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.D. Statistics corner: Questions and answers about language testing statistics: Skewness and kurtosis. Shiken 1997, 1, 20–23. Available online: https://www.jalt.org/test/bro_1.htm (accessed on 16 August 1997).
- FAO. Drought Impact Mitigation and Prevention in the Limpopo River Basin: A Situation Analysis; Food and Agricultural Organisation: Rome, Italy, 2004; p. 160. [Google Scholar]
- Mason, S.J.; Tyson, P.D. The Occurrence and Predictability of Droughts over Southern Africa. In Drought Volume 1 A Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; pp. 113–134. [Google Scholar]
- Donnenfeld, A.; Crooke, C.; Hedde, S. A Delicate Balance: Water Scarcity in South Africa; Southern Africa Report 13; Institute of Security Studies: Pretoria, South Africa, 2018. [Google Scholar]
- Mosase, E.; Ahlablame, L. Rainfall and temperature in Limpopo River Basin, southern Africa: Means, variation and trends from 1979 to 2015. Water 2018, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Loua, R.T.; Bencherif, H.; Mbatha, N.; Bègue, N.; Hauchecorne, A.; Bamba, Z.; Sivakumar, V. Study on Temporal Variations of Surface Temperature and Rainfall at Conakry Airport, Guinea: 1960–2016. Climate 2019, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Bilbao, J.; Román, R.; Yousif, C.; Mateos, D.; de Miguel, A. Total ozone column, water vapour and aerosol effects on erythemal and global solar irradiance in Marsaxlokk, Malta. Atmos. Environ. 2014, 99, 508–518. [Google Scholar] [CrossRef]
- Chang, C.; Glover, G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 2010, 50, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-C.; Chau, K.-W.; Xu, D.-M.; Chen, X.-Y. Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Mckellar, N.; New, M.; Jack, C. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. S. Afr. J. Sci. 2014, 110, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Nxumalo, M.P. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef] [Green Version]
Station Name | Location | Elevation m.a.s.l | Mean | ||
---|---|---|---|---|---|
Latitude | Longitude | ||||
Rainfall | Mukumbani | −22.9169 | 30.4055 | 762 | 82.32 mm |
Klein Australie | −23.05 | 30.22 | 702 | 97.72 mm | |
Matiwa | −22.98 | 30.28 | 1311 | 147.25 mm | |
Nooitgedatch | 23.07 | 30.2 | 762 | 78.65 mm | |
Levubu | −23.0798 | 30.28 | 706 | 66.08 mm | |
Vondo Bos | −22.933 | 30.333 | 1130 | 111.27 mm | |
Shefera | −23.03 | 30.12 | 1214 | 103.68 mm | |
Tshivhase | −22.9607 | 30.3545 | 976 | 120.77 mm | |
Temperature | Mukumbani | −22.9169 | 30.4055 | 762 | 20.512 °C |
Levubu | −23.0798 | 30.28 | 706 | 19.643 °C | |
Tshivhase | −22.9607 | 30.3545 | 976 | 21.154 °C | |
Evaporation | A9E002 | −23.124 | 30.105 | 801 | 112.459 mm |
Streamflow | A9H003 | −22.898 | 30.5238 | 554 | 2.4214 m/s |
A9H006 | −23.0357 | 30.2775 | 693 | 10.502 m/s | |
A9H012 | −22.7685 | 30.8893 | 428 | 82.456 m/s | |
A9H013 | −22.4377 | 31.0778 | 258 | 81.474 m/s |
Index | Min | Max | Mean | Median | STDEV | Variance | Skew. | Kurt. |
---|---|---|---|---|---|---|---|---|
NADI-NDII | −2.49 | 2.43 | 0 | 0.02 | 0.986 | 0.972 | 0.082 | −0.645 |
NADI-MERRA–2 | −2.39 | 2.43 | 0 | −0.01 | 0.985 | 0.969 | 0.041 | −0.513 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathivha, F.; Mbatha, N. Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies. Water 2022, 14, 26. https://doi.org/10.3390/w14010026
Mathivha F, Mbatha N. Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies. Water. 2022; 14(1):26. https://doi.org/10.3390/w14010026
Chicago/Turabian StyleMathivha, Fhumulani, and Nkanyiso Mbatha. 2022. "Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies" Water 14, no. 1: 26. https://doi.org/10.3390/w14010026
APA StyleMathivha, F., & Mbatha, N. (2022). Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies. Water, 14(1), 26. https://doi.org/10.3390/w14010026