# Hydraulic Ram Pump Integration into Water Distribution Systems for Energy Recovery Application

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Hydram Frictionless Model

#### 2.2. Hydram-Comprehensive Model

#### 2.3. Optimization and Fitness Function

## 3. Results and Discussion

#### 3.1. Case Study 01—Proof of Concept

#### 3.2. Case Study 02—Water Distribution Network

#### 3.3. Case Study 02—Sensitivity Analysis

_{2}emissions. The water volume stands for the annual amount of water [m

^{3}] pumped to the uphill consumer, by both the Hydram and the centrifugal pump.

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**The Hydram capital cost corresponding to its size. The graph shows the available data (dots), its trendline, and the speculated prices for larger pump sizes (triangles).

## Appendix B

**Figure A2.**The storage tank capital cost corresponding to its size. The graph shows the available data (dots) and its trendline.

## References

- Del Teso, R.; Gómez, E.; Estruch-Juan, E.; Cabrera, E. Topographic energy management in water distribution systems. Water Resour. Manag.
**2019**, 33, 4385–4400. [Google Scholar] [CrossRef] - Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water–energy nexus for water distribution systems: A literature review. Environ. Rev.
**2019**, 27, 519–544. [Google Scholar] [CrossRef] - Lambert, A.; Fantozzi, M.; Thornton, J. Practical approaches to modelling leakage and pressure management in distribution systems-progress since 2005. In Proceedings of the CCWI 12th Int Conf: Computing and Control in the Water Industry, Perugia, Italy, 2–4 September 2013. [Google Scholar] [CrossRef]
- Pålsson, H.; Pettersson, F.; Hiselius, L.W. Energy consumption in e-commerce versus conventional trade channels-Insights into packaging, the last mile, unsold products and product returns. J. Clean. Prod.
**2017**, 164, 765–778. [Google Scholar] [CrossRef] - Garcia, A.M.; López-Jiménez, P.; Sánchez-Romero, F.-J.; Pérez-Sánchez, M. Objectives, Keys and Results in the Water Networks to Reach the Sustainable Development Goals. Water
**2021**, 13, 1268. [Google Scholar] [CrossRef] - Vairavamoorthy, K.; Lumbers, J. Leakage Reduction in Water Distribution Systems: Optimal Valve Control. J. Hydraul. Eng.
**1998**, 124, 1146–1154. [Google Scholar] [CrossRef] - Araujo, L.S.; Ramos, H.; Coelho, S.T. Pressure control for leakage minimization in water distribution systems management. Water Resour. Manag.
**2006**, 20, 133–149. [Google Scholar] [CrossRef] - Liberatore, S.; Sechi, G.M. Location and Calibration of Valves in Water Distribution Networks Using a Scatter-Search Meta-heuristic Approach. Water Resour. Manag.
**2009**, 23, 1479–1495. [Google Scholar] [CrossRef] - Ali, M.E. Knowledge-Based Optimization Model for Control Valve Locations in Water Distribution Networks. J. Water Resour. Plan. Manag.
**2015**, 141, 4014048. [Google Scholar] [CrossRef] - Nicolini, M.; Zovatto, L. Optimal Location and Control of Pressure Reducing Valves in Water Networks. J. Water Resour. Plan. Manag.
**2009**, 135, 178–187. [Google Scholar] [CrossRef] - Creaco, E.; Pezzinga, G. Embedding linear programming in multi objective genetic algorithms for reducing the size of the search space with application to leakage minimization in water distribution networks. Environ. Model. Softw.
**2015**, 69, 308–318. [Google Scholar] [CrossRef] - Creaco, E.; Pezzinga, G. Multiobjective Optimization of Pipe Replacements and Control Valve Installations for Leakage Attenuation in Water Distribution Networks. J. Water Resour. Plan. Manag.
**2015**, 141, 4014059. [Google Scholar] [CrossRef] - Brentan, B.; Meirelles, G.; Luvizotto Jr, E.; Izquierdo, J. Joint operation of pressure-reducing valves and pumps for improving the efficiency of water distribution systems. J. Water Resour. Plan. Manag.
**2018**, 144, 4018055. [Google Scholar] [CrossRef][Green Version] - Creaco, E.; Campisano, A.; Fontana, N.; Marini, G.; Page, P.R.; Walski, T. Real time control of water distribution networks: A state-of-the-art review. Water Res.
**2019**, 161, 517–530. [Google Scholar] [CrossRef] - Ferrarese, G.; Malavasi, S. Perspectives of Water Distribution Networks with the GreenValve System. Water
**2020**, 12, 1579. [Google Scholar] [CrossRef] - Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J.
**2010**, 7, 25–45. [Google Scholar] [CrossRef] - Van Zyl, J.; Clayton, C.R.I. The effect of pressure on leakage in water distribution systems. Water Manag.
**2007**, 160, 109–114. [Google Scholar] [CrossRef] - Ávila, C.; Sánchez-Romero, F.-J.; López-Jiménez, P.; Pérez-Sánchez, M. Leakage Management and Pipe System Efficiency. Its Influence in the Improvement of the Efficiency Indexes. Water
**2021**, 13, 1909. [Google Scholar] [CrossRef] - Creaco, E.; Franchini, M. A new algorithm for real-time pressure control in water distribution networks. Water Supply
**2013**, 13, 875–882. [Google Scholar] [CrossRef] - Saldarriaga, J.; Salcedo, C.A. Determination of Optimal Location and Settings of Pressure Reducing Valves in Water Distribution Networks for Minimizing Water Losses. Procedia Eng.
**2015**, 119, 973–983. [Google Scholar] [CrossRef][Green Version] - Covelli, C.; Cozzolino, L.; Cimorelli, L.; Della Morte, R.; Pianese, D. Optimal Location and Setting of PRVs in WDS for Leakage Minimization. Water Resour. Manag.
**2016**, 30, 1803–1817. [Google Scholar] [CrossRef][Green Version] - Carravetta, A.; Fecarotta, O.; Sinagra, M.; Tucciarelli, T. Cost-Benefit Analysis for Hydropower Production in Water Distribution Networks by a Pump as Turbine. J. Water Resour. Plan. Manag.
**2014**, 140, 4014002. [Google Scholar] [CrossRef] - Gallagher, J.; Styles, D.; McNabola, A.; Williams, A.P. Life cycle environmental balance and greenhouse gas mitigation potential of micro-hydropower energy recovery in the water industry. J. Clean. Prod.
**2015**, 99, 152–159. [Google Scholar] [CrossRef] - Fecarotta, O.; Aricò, C.; Carravetta, A.; Martino, R.; Ramos, H.M. Hydropower potential in water distribution networks: Pressure control by PATs. Water Resour. Manag.
**2015**, 29, 699–714. [Google Scholar] [CrossRef] - Sitzenfrei, R.; Rauch, W. Optimizing Small Hydropower Systems in Water Distribution Systems Based on Long-Time-Series Simulation and Future Scenarios. J. Water Resour. Plan. Manag.
**2015**, 141, 4015021. [Google Scholar] [CrossRef] - Corcoran, L.; McNabola, A.; Coughlan, P. Optimization of Water Distribution Networks for Combined Hydropower Energy Recovery and Leakage Reduction. J. Water Resour. Plan. Manag.
**2016**, 142, 4015045. [Google Scholar] [CrossRef] - Bonthuys, G.J.; van Dijk, M.; Cavazzini, G. Energy Recovery and Leakage-Reduction Optimization of Water Distribution Systems Using Hydro Turbines. J. Water Resour. Plan. Manag.
**2020**, 146, 4020026. [Google Scholar] [CrossRef] - Ramos, H.M.; Giralt, L.; López-Jiménez, P.A.; Pérez-Sánchez, M. Water-energy nexus management strategy towards sustainable mobility goal in smart cities. Urban Water J.
**2021**, 1–12. [Google Scholar] [CrossRef] - Afshar, A.; Ben Jemaa, F.; Mariño, M.A. Optimization of Hydropower Plant Integration in Water Supply System. J. Water Resour. Plan. Manag.
**1990**, 116, 665–675. [Google Scholar] [CrossRef] - Paish, O. Small hydro power: Technology and current status. Renew. Sustain. Energy Rev.
**2002**, 6, 537–556. [Google Scholar] [CrossRef] - Aggidis, G.; Luchinskaya, E.; Rothschild, R.; Howard, D. The costs of small-scale hydro power production: Impact on the development of existing potential. Renew. Energy
**2010**, 35, 2632–2638. [Google Scholar] [CrossRef] - Karadirek, I.E.; Kara, S.; Yilmaz, G.; Muhammetoglu, A. Implementation of Hydraulic Modelling for Water-Loss Reduction Through Pressure Management. Water Resour. Manag.
**2012**, 26, 2555–2568. [Google Scholar] [CrossRef] - Anderson, E.W. Hydraulic rams. Proc. Inst. Mech. Eng.
**1922**, 102, 337–355. [Google Scholar] [CrossRef][Green Version] - Young, B.W. Simplified analysis and design of the hydraulic ram pump. Proc. Inst. Mech. Eng. Part A J. Power Energy
**1996**, 210, 295–303. [Google Scholar] [CrossRef] - Young, B.W. Design of hydraulic ram pump systems. Proc. Inst. Mech. Eng. Part A J. Power Energy
**1995**, 209, 313–322. [Google Scholar] [CrossRef] - Rosado, L.E.C.; López-Jiménez, P.A.; Sánchez-Romero, F.-J.; Fuertes, P.C.; Pérez-Sánchez, M. Applied Strategy to Characterize the Energy Improvement Using PATs in a Water Supply System. Water
**2020**, 12, 1818. [Google Scholar] [CrossRef]

**Figure 1.**Hydram basic components. Nodes A, B, and C refer to the connections of the drive pipe (L1), the discharge pipe (L2), and the waste valve, respectively. L3 refers to the pipe exiting the waste valve, node D refers to the uphill consumer and Hs denotes the upstream head. In the following equations, ${Q}_{i}$ refers to the flow at pipe $i$ in CMH, while ${H}_{j}$ refers to the head at node $j$ in meters.

**Figure 2.**Basic system configuration for the hybrid pumping unit (HPU). C1 and C2 denote the downhill and uphill consumers, respectively.

Mode | 24-Hour Pattern | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Hybrid | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Pump | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

Ram | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**Table 2.**The components’ annual costs in (NIS) under different operation modes for case study 01. The tank volume and Hydram size are presented as well.

Pump-Mode | Hybrid-Mode | Ram-Mode | |
---|---|---|---|

Tank Volume (m^{3}) | 148 | 316 | 6.2 |

Tank annuity | 5527 | 3058 | 978 |

Energy cost | 17,965 | 5199 | 0 |

Hydram size (inch) | 0 | 6′′ | 6′′ |

Hydram annuity | 0 | 2622 | 2622 |

Total annual cost | 23,492 | 10,920 | 3600 |

Supplied demand | 100% | 100% | 70% |

**Table 3.**Annual water and energy consumption followed by sustainability indicators for case study 01.

Pump-Mode | Hybrid-Mode | Ram-Mode | |
---|---|---|---|

Energy consumed [kW·h] | 44,913 | 14,853 | - |

Water volume pumped [m^{3}] | 504 | 508 | 354 |

IAE [MW·h] $\mathrm{IEFW}\text{}[\mathrm{kW}\xb7\mathrm{h}/{\mathrm{m}}^{3}$] $\mathrm{IEC}\text{}[\mathrm{NIS}/{\mathrm{m}}^{3}$] | 44.9 | 14.9 | - |

89.1 | 29.2 | - | |

35.6 | 10.2 | - |

Mode | 24-h Pattern | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Frictionless | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

Hybrid | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |

Pump | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |

Ram | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

**Table 5.**The annual costs in (NIS) under different operation modes for case study 02. The tank volume and Hydram size are presented as well.

Pump-Mode | Hybrid-Mode | Frictionless | Ram-Mode | |
---|---|---|---|---|

Tank Volume (m^{3}) | 395 | 108 | 155 | 3.4 |

Tank annuity | 6687 | 2477 | 3163 | 937 |

Energy cost | 22,456 | 12,632 | 7953 | 0 |

Hydram size (inch) | 0 | 6“ | 6“ | 6“ |

Hydram annuity | 0 | 2622 | 2622 | 2622 |

Total annual cost | 29,143 | 17,730 | 13,738 | 3600 |

Supplied demand | 100% | 100% | 100% | 65% |

**Table 6.**Annual water and energy consumption followed by sustainability indicators for case study 02.

Pump-Mode | Hybrid-Mode | Ram-Mode | |
---|---|---|---|

Energy consumed [kW·h] | 56,141 | 28,071 | - |

Water volume [m^{3}] | 635 | 639 | 412 |

IAE [MW·h] $\mathrm{IEFW}\text{}[\mathrm{kW}\xb7\mathrm{h}/{\mathrm{m}}^{3}$] $\mathrm{IEC}\text{}[\mathrm{NIS}/{\mathrm{m}}^{3}$] | 56.1 | 28.1 | - |

88.4 | 44.0 | - | |

35.4 | 19.8 | - |

01 | 02 | 03 | 04 | 05 | 06 | 07 | |
---|---|---|---|---|---|---|---|

Uphill base demand [CMH] | 50 | 50 | 50 | 50 | 60 | 100 | 150 |

Downhill base demand [CMH] | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

Uphill pattern | Pattern | constant | Pattern | Pattern | Pattern | Pattern | Pattern |

Downhill pattern | Pattern | Pattern | constant | Pattern | Pattern | Pattern | Pattern |

Pump power [Kw] | 12.8 | 12.8 | 12.8 | 15.4 | 12.8 | 12.8 | 12.8 |

**Table 8.**The annual costs, the pumping data, and the sustainability indexes for the seven scenarios for case study 02.

01 | 02 | 03 | 04 | 05 | 06 | 07 | ||
---|---|---|---|---|---|---|---|---|

Annual costs [NIS] | Tank annuity | 3934 | 6833 | 2916 | 4504 | 5102 | 11,263 | 14,651 |

Energy cost | 7018 | 33,596 | 0 | 8421 | 14,035 | 21,521 | 57,545 | |

Hydram annuity | 2622 | 2622 | 2622 | 2622 | 2622 | 2622 | 2622 | |

Total annual cost | 13,574 | 43,051 | 5538 | 15,548 | 21,759 | 35,406 | 74,818 | |

Centrifugal pump | Pumping hours [h/day] | 5 | 10 | 0 | 5 | 8 | 9 | 10 |

Energy consumed [kW·h] | 23,360 | 46,720 | 0 | 23,360 | 37,376 | 42,048 | 46,720 | |

Water volume [m^{3}] | 635 | 635 | 635 | 635 | 762 | 1270 | 1905 | |

Sustainability indexes | IAE [MW·h] | 23.4 | 46.7 | 0.0 | 28.1 | 37.4 | 42.0 | 46.7 |

$\mathrm{IEFW}\text{}[\mathrm{kW}\xb7\mathrm{h}/{\mathrm{m}}^{3}$] | 36.8 | 73.6 | 0.0 | 44.3 | 49.0 | 33.1 | 24.5 | |

$\mathrm{IEC}\text{}[\mathrm{NIS}/{\mathrm{m}}^{3}$] | 11.1 | 52.9 | 0.0 | 13.3 | 18.4 | 16.9 | 30.2 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zeidan, M.; Ostfeld, A.
Hydraulic Ram Pump Integration into Water Distribution Systems for Energy Recovery Application. *Water* **2022**, *14*, 21.
https://doi.org/10.3390/w14010021

**AMA Style**

Zeidan M, Ostfeld A.
Hydraulic Ram Pump Integration into Water Distribution Systems for Energy Recovery Application. *Water*. 2022; 14(1):21.
https://doi.org/10.3390/w14010021

**Chicago/Turabian Style**

Zeidan, Mohamad, and Avi Ostfeld.
2022. "Hydraulic Ram Pump Integration into Water Distribution Systems for Energy Recovery Application" *Water* 14, no. 1: 21.
https://doi.org/10.3390/w14010021