Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka
Abstract
:1. Introduction
2. Research Framework
3. Study Area
4. Methodology
4.1. GCM Selection and Downscaling/Bias Correction
4.1.1. GCM Selection
4.1.2. Statistical Bias Correction and Downscaling of Precipitation
4.1.3. Temperature Correction
4.2. Hydrologic Model
- The Simple Biosphere Model 2 module:
- 2.
- The unsaturated zone vertical flow:
- 3.
- The 2D diffusive wave lateral flow module:
- 4.
- The 1D diffusive wave river flow module:
5. Data and Model Set-Up
5.1. Data for GCM Selection, Past and Future Climate Data
5.2. Data for Bias Correction of Rainfall and Hydrological Modeling
5.3. Data for Socio-Economic Damage Assessment
5.4. Hydrological Model Set-Up
5.5. Model Performance Metrics
5.6. Qualitative and Quantitative Decision Index
6. Results and Discussion
6.1. Meteorological Assessment
6.1.1. Basin-Scale Temperature Changes
6.1.2. Changes in Annual Climatology of Rainfall
6.1.3. Changes in Seasonal Climatology of Rainfall
6.1.4. Extreme Event Data Analysis: Meteorological Rainfall Extremes and Droughts
6.2. WEB-RRI Model Calibration and Validation
6.3. Hydrological Assessment
6.3.1. Discharge Analysis
6.3.2. Extreme Event Data Analysis: Hydrological Floods and Droughts
6.3.3. Inundation Analysis
6.3.4. Socio-Economic Damage Analysis
6.3.5. Decision Making
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roxburgh, T.; Elli, K.; Johnson, J.A.; Baldos, U.L.; Hertel, T.; Nootenboom, C.; Polasky, S. Global Futures: Assesing the Global Economic Impacts of Environmental Change to Support Policy-Making; Summary Report; WWF: Gland, Switzerland, 2020. [Google Scholar]
- UN Water. Policy Brief Climate Change and Water; UN Water: Geneva, Switzerland, 2019; pp. 1–8. [Google Scholar]
- Teng, J.; Vaze, J.; Chiew, F.H.S.; Wang, B.; Perraud, J.M. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J. Hydrometeorol. 2012, 13, 122–139. [Google Scholar] [CrossRef]
- CREED. The Human Cost of Water Related Disasters; CREED: Brasschaat, Belgium, 2015. [Google Scholar]
- Kumar, A.; Sharma, M.P. A modeling approach to assess the greenhouse gas risk in Koteshwar hydropower reservoir, India. Hum. Ecol. Risk Assess. 2016, 22, 1651–1664. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P. Assessment of risk of GHG emissions from Tehri hydropower reservoir, India. Hum. Ecol. Risk Assess. 2016, 22, 71–85. [Google Scholar] [CrossRef]
- UN. Sendai Framework for Disaster Risk Reduction: 2015–2030; UN: New York, NY, USA, 2015. [Google Scholar]
- UN-Secretary-General. ECOSOC–Economic and Social Council: Special Edition: Progress towards the Sustainable Development Goals; UN: New York, NY, USA, 2019. [Google Scholar]
- UN. Adoption of the Paris Agreement Proposal by the President; UN: New York, NY, USA, 2015. [Google Scholar]
- Zhou, L.; Rasmy, M.; Takeuchi, K.; Koike, T.; Selvarajah, H.; Ao, T. Adequacy of Near Real-Time Satellite Precipitation Products in Driving Flood Discharge Simulation in the Fuji River Basin, Japan. Appl. Sci. 2021, 11, 1087. [Google Scholar] [CrossRef]
- Koike, T.; Koudelova, P.; Jaranilla-sanchez, P.A.; Bhatti, A.M.; Nyunt, C.T.; Tamagawa, K. River management system development in Asia based on Data Integration and Analysis System (DIAS) under GEOSS. Earth Sci. 2014, 58, 76–95. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood inundation mapping at ungauged basins using coupled hydrometeorological-hydraulic modelling: The catastrophic case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Bralower, T.; Bice, D. Earth in the Future. Understanding GCMs. 2018. Available online: https://www.e-education.psu.edu/earth103/node/607 (accessed on 4 April 2020).
- Freer, J.; Beven, K.J.; Neal, J.; Schumann, G.; Hall, J.; Bates, P. Flood Risk and Uncertainty; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107006. [Google Scholar]
- Nyunt, C.T.; Koike, T.; Yamamoto, A. Statistical bias correction for climate change impact on the basin scale precipitation in Sri Lanka, Philippines, Japan and Tunisia. Hydrol. Earth Syst. Sci. Discuss. 2016, 14, 1–32. [Google Scholar]
- Rasmy, M.; Koike, T.; Lawford, P.; Hara, M. Assessment of future water resources in the tone river basin using a combined dynamical-stastical downscaling approach. J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 2015, 71, 73–78. [Google Scholar]
- Kawasaki, A.; Yamamoto, A.; Koudelova, P.; Acierto, R.; Nemoto, T.; Kitsuregawa, M.; Koike, T. Data integration and analysis system (DIAS) contributing to climate change analysis and disaster risk reduction. Data Sci. J. 2017, 16, 41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.E.I.; Xu, Y.; Meng, C.; Li, X.; Liu, H.; Wang, C. Comparison of statistical and dynamic downscaling techniques in generating high-resolution temperatures in China from CMIP5 GCMs. J. Appl. Meteorol. Climatol. 2020, 59, 207–235. [Google Scholar] [CrossRef]
- Maurer, E.P.; Hidalgo, H.G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 2008, 12, 551–563. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 2016, 121, 2110–2129. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Aranilla-Sanchez, P.A.; Wang, L.; Koike, T. Investigating the Hydrologic Response of Current Dam Operation System To Future Climate in a Snowy River Basin (Yattajima) of Japan. J. Jpn. Soc. Civ. Eng. Ser. B1 2015, 71, I_103–I_108. [Google Scholar] [CrossRef] [Green Version]
- Rasmy, M.; Sayama, T.; Koike, T. Development of water and energy Budget-based Rainfall-Runoff -Inundation model (WEB-RRI) and its veri fi cation in the Kalu and Mundeni River Basins, Sri Lanka. J. Hydrol. 2019, 579, 124163. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- UNDRR. DesInventar Sendai. 2020. Available online: https://www.desinventar.net/DesInventar/profiletab.jsp (accessed on 1 April 2021).
- DOM-SL. Climate of Sri Lanka. 2020. Available online: http://www.meteo.gov.lk/index.php?option=com_content&view=article&id=94&Itemid=310&lang=en#4-northeast-monsoon-season-december-february (accessed on 4 April 2020).
- DOA-SL. Agro Climatic Zones. 2020. Available online: https://www.doa.gov.lk/index.php/en/weather-climate (accessed on 4 May 2020).
- CEB-SL. Annual Report 2015; CEB-SL: Colombo, Sri Lanka, 2017.
- MASL-SL. Mahaweli Authority of Sri Lanka. In Proceedings of the GEOS Asia Pacific Symposium, Kyoto, Japan, 24–26 October 2018. [Google Scholar]
- Suzuki-Parker, A.; Kusaka, H.; Takayabu, I.; Dairaku, K.; Ishizaki, N.N.; Ham, S. Contributions of GCM/RCM uncertainty in ensemble dynamical downscaling for precipitation in East Asian summer monsoon season. Sci. Online Lett. Atmos. 2018, 14, 97–104. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci. Total Environ. 2018, 627, 756–769. [Google Scholar] [CrossRef]
- Sellers, P.J.; Tucker, C.J.; Collatz, G.J.; Los, S.O.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMs. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Koike, T.; Yang, K.; Jackson, T.J.; Bindlish, R.; Yang, D. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains experiments (SGP97 and SGP99). J. Geophys. Res. Atmos. 2009, 114, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrol. Sci. J. 2012, 57, 298–312. [Google Scholar] [CrossRef]
- PBrunner; Simmons, C.T.; Cook, P.G.; Therrien, R. Modeling surface water-groundwater interaction with MODFLOW: Some considerations. Ground Water 2010, 48, 174–180. [Google Scholar]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.; Yamashika, Y.; Takara, K. Impact Assessment of IOD/ENSO in the Asian Region; Annuals of Disaster Prevention Research Institute, Kyoto University: Kyoto, Japan, 2010. [Google Scholar]
- Breeick, S. NASA: Earth Data Powered by EOSDIS. 2020. Available online: https://earthdata.nasa.gov/ (accessed on 4 May 2020).
- Afifi, Z.; Chu, H.J.; Kuo, Y.L.; Hsu, Y.C.; Wong, H.K.; Ali, M.Z. Residential flood loss assessment and risk mapping from high-resolution simulation. Water 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Kiczko, A.; Mirosław-Światek, D. Impact of uncertainty of floodplain Digital Terrain Model on 1D hydrodynamic flow calculation. Water 2018, 10, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Dai, Q.; Han, D.; Zhuo, L.; Zhu, S.; Zhang, S. Modeling the high-resolution dynamic exposure to flooding in a city region. Hydrol. Earth Syst. Sci. 2019, 23, 3353–3372. [Google Scholar] [CrossRef] [Green Version]
- European-Commission. GHS Population Grid, Derived from GPW4, Multitemporal (1975, 1990, 2000, 2015). 2015. Available online: https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2016_POP_GPW_GLOBE_V1#bands (accessed on 25 November 2020).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2019. Available online: https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 25 November 2020).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 791–802. [Google Scholar]
- Christensen, J.H.; Aldrian, E.; An, S., II; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; Kitoh, A.; et al. Climate phenomena and their relevance for future regional climate change. In Climate Change 2013: The Physical Sci-ence Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057, pp. 1217–1308. [Google Scholar]
- Zhang, Y.; Jiang, F.; Wei, W.; Liu, M.; Wang, W.; Bai, L.; Li, X.; Wang, S. Changes in annual maximum number of consecutive dry and wet days during 1961-2008 in Xinjiang, China. Nat. Hazards Earth Syst. Sci. 2012, 12, 1353–1365. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways [...]; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
Model Name | Institute | Country | Annual | SW Monsoon | NE Monsoon | Grand Total * | Remarks | |||
---|---|---|---|---|---|---|---|---|---|---|
Precipitation | Total Index | Precipitation | Total Index | Precipitation | Total Index | |||||
ACCESS1.0 | CSIRO-BOM | Australia | 0 | 4 | 1 | 6 | 0 | 3 | 13 | PPR |
ACCESS1.3 | CSIRO-BOM | Australia | −1 | −3 | −1 | −3 | −1 | 3 | −3 | |
BCC-CSM1.1 | BCC | China | −1 | −1 | −1 | 2 | 0 | 1 | 2 | |
BCC-CSM1.1(m) | BCC | China | 0 | −2 | 0 | −3 | 0 | 1 | −4 | |
BNU-ESM | BNU | China | 1 | 3 | 1 | 1 | 1 | 1 | 5 | |
CanCM4 | CCCMA | Canada | 1 | 5 | 1 | 5 | 1 | 4 | 14 | FF |
CanESM2 | CCCMA | Canada | 1 | 6 | 1 | 5 | 0 | 2 | 13 | Selected |
CCSM4 | NCAR | USA | 1 | 3 | 1 | 4 | −1 | 0 | 7 | |
CESM1(BGC) | NCAR | USA | 1 | 3 | 1 | 5 | 0 | 1 | 9 | |
CESM1(CAM5) | NCAR | USA | 1 | 5 | 1 | 6 | −1 | 0 | 11 | |
CESM1(FASTCHEM) | NCAR | USA | 1 | −1 | 1 | 3 | −1 | 0 | 2 | |
CESM1(WACCM) | NCAR | USA | 1 | 6 | 1 | 0 | −1 | 3 | 9 | |
CMCC-CESM | CMCC | Italy | −1 | 3 | −1 | 5 | 1 | 2 | 10 | |
CMCC-CMS | CMCC | Italy | −1 | 3 | −1 | 4 | 0 | 3 | 10 | |
CNRM-CM5 | NCMR | France | 1 | 6 | 1 | 5 | 1 | 4 | 15 | Selected |
CNRM-CM5-2 | NCMR | France | 0 | 4 | 0 | 3 | 1 | 3 | 10 | |
CSIRO-Mk3.6.0 | CSIRO-QCCCE | Australia | −1 | −1 | −1 | −1 | 0 | 1 | −1 | |
FGOALS-g2 | LASG-CESS | China | 0 | −1 | 0 | −1 | 1 | 0 | −2 | |
FIO-ESM | FIO | China | 1 | 2 | 1 | 3 | −1 | −1 | 4 | |
GFDL-CM2.1 | NOAA-GFDL | USA | 1 | 4 | 1 | 7 | 1 | 5 | 16 | FF |
GFDL-CM3 | NOAA-GFDL | USA | 1 | 4 | 1 | 6 | −1 | 0 | 10 | |
GFDL-ESM2G | NOAA-GFDL | USA | 1 | 5 | 1 | 6 | 1 | 2 | 13 | Selected |
GFDL-ESM2M | NOAA-GFDL | USA | 1 | 1 | 1 | 2 | 1 | 3 | 6 | |
GISS-E2-H | NASA-GISS | USA | −1 | −2 | −1 | −2 | 0 | 2 | −2 | |
GISS-E2-H-CC | NASA-GISS | USA | −1 | 0 | −1 | −2 | 0 | 3 | 1 | |
GISS-E2-R | NASA-GISS | USA | −1 | 0 | −1 | −1 | 0 | 5 | 4 | |
GISS-E2-R-CC | NASA-GISS | USA | −1 | 2 | −1 | −1 | 0 | 3 | 4 | |
HadCM3 | MOHC | UK | −1 | 0 | 0 | 2 | 0 | 1 | 1 | |
HadGEM2-ES | MOHC | UK | −1 | 0 | 0 | 2 | 1 | 5 | 7 | |
INM-CM4 | INM | Russia | 0 | −2 | 1 | 1 | 0 | −1 | −2 | |
IPSL-CM5A-LR | IPSL | France | 0 | −2 | 0 | −3 | −1 | −4 | −9 | |
IPSL-CM5A-MR | IPSL | France | 0 | −1 | 0 | 0 | 0 | −2 | −3 | |
IPSL-CM5B-LR | IPSL | France | −1 | −4 | −1 | −4 | −1 | 0 | −8 | |
MIROC-ESM | UT | Japan | 0 | −3 | −1 | −4 | 0 | 0 | −7 | |
MIROC-ESM-CHEM | UT | Japan | 0 | −2 | −1 | −3 | 0 | −1 | −6 | |
MIROC4h | UT | Japan | 0 | 2 | −1 | 0 | 1 | 4 | 6 | |
MIROC5 | UT | Japan | 1 | 5 | 1 | 5 | 0 | 2 | 12 | |
MPI-ESM-LR | MPI-N | Germany | 1 | 7 | 1 | 7 | 1 | 5 | 19 | Selected |
MPI-ESM-MR | MPI-N | Germany | 1 | 6 | 0 | 1 | 3 | 5 | 19 | PPR |
MPI-ESM-P | MPI-N | Germany | 1 | 7 | 1 | 7 | 1 | 6 | 20 | FF |
MRI-CGCM3 | MRI | Japan | −1 | −2 | −1 | −4 | 0 | 3 | −3 | |
MRI-ESM1 | MRI | Japan | −1 | −4 | 0 | −5 | −1 | 0 | −9 | |
NorESM1-M | NCC | Norway | 1 | −1 | 1 | 2 | −1 | −3 | −2 | |
NorESM1-ME | NCC | Norway | 1 | 0 | 1 | 2 | 0 | −1 | 0 |
ID | Station Name | Climatic Zone | Latitude (N) | Longitude (E) | Annual Average Rainfall (mm) | ID | Station Name | Climatic Zone | Latitude (N) | Longitude (E) | Annual Average Rainfall (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Maliboda | Wet | 6.89 | 80.43 | 4582 | 17 | Bowatenna | Intermediate | 7.67 | 80.67 | 1649 |
2 | Watawala | Wet | 6.95 | 80.54 | 5141 | 18 | Ulhitiya | Dry | 7.48 | 81.06 | 1899 |
3 | Calidonia | Wet | 6.90 | 80.70 | 3759 | 19 | Elehara | Dry | 7.73 | 80.79 | 1812 |
4 | Ambewela | Wet | 6.87 | 80.80 | 2071 | 20 | Dambuluoya | Dry | 7.81 | 80.54 | 1794 |
5 | Kotmale | Wet | 7.06 | 80.60 | 3237 | 21 | Kandalama | Dry | 7.88 | 80.66 | 1388 |
6 | Peradeniya_ID | Wet | 7.27 | 80.61 | 1823 | 22 | Kalawewa RB | Dry | 8.02 | 80.54 | 1339 |
7 | Peradeniya_Bot | Wet | 7.27 | 80.60 | 1919 | 23 | Angamedilla | Dry | 7.86 | 80.91 | 1591 |
8 | Katugastota | Wet | 7.32 | 80.62 | 1780 | 24 | Maduruoya | Dry | 7.65 | 81.22 | 1723 |
9 | Polgolla | Wet | 7.32 | 80.65 | 1808 | 25 | Para.samudraya | Dry | 7.91 | 81.00 | 1572 |
10 | Bandarawela | Intermediate | 6.83 | 81.00 | 1519 | 26 | Palugasdamana | Dry | 7.96 | 81.03 | 1426 |
11 | Victoria | Intermediate | 7.24 | 80.79 | 1466 | 27 | Girithale | Dry | 8.00 | 80.92 | 1364 |
12 | Randenigala | Intermediate | 7.20 | 80.92 | 1987 | 28 | Minneriya | Dry | 8.03 | 80.89 | 1258 |
13 | Rantambe | Intermediate | 7.20 | 80.95 | 1726 | 29 | Kaudulla Wewa | Dry | 8.14 | 80.93 | 1425 |
14 | Minipe LB | Intermediate | 7.21 | 80.98 | 1645 | 30 | Huruluwewa | Dry | 8.22 | 80.71 | 1263 |
15 | Mapakadawewa | Intermediate | 7.29 | 81.03 | 1800 | 31 | Kantale | Dry | 8.37 | 81.00 | 1465 |
16 | Illukumbura | Intermediate | 7.54 | 80.80 | 2528 | 32 | Alle Tank | Dry | 8.37 | 81.30 | 1315 |
Parameters | Unit | Value |
---|---|---|
Soil Parameters (basin average) | ||
Saturated water content (θS) | m3/m3 | 0.54 |
Residual soil water content (θr) | m3/m3 | 0.07 |
Saturated hydraulic conductivity for soil surface | mm/h | 12.88 |
van Genuchten parameter (α) | m−2 | 0.03 |
van Genuchten parameter (n) | 1.43 | |
Soil depth (DS) | m | 1.50 |
River Parameters | ||
Manning’s roughness coefficient for river | 0.06 | |
Manning’s roughness coefficient for slope | 0.60 | |
Width parameter (CW) | 8.00 | |
Width parameter (SW) | 0.34 | |
Depth parameter (Cd) | 0.90 | |
Depth parameter (Sd) | 0.20 |
Meteorological Assessment | Hydrological Assessment | ||||||
---|---|---|---|---|---|---|---|
Future Rainfall | Future Extreme Rainfall | Future Drought | Future Discharge | Future Flood | Future Drought | ||
Level of confidence | Very likely increase | Likely increase | Likely increase | Very likely increase | Very likely increase |
Temporal Scale | Level of Confidence of Future Discharge |
---|---|
IM-2 | Very likely increase |
NE | Very likely increase |
IM-1 | Likely increase |
SW | Very likely increase |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvarajah, H.; Koike, T.; Rasmy, M.; Tamakawa, K.; Yamamoto, A.; Kitsuregawa, M.; Zhou, L. Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. Water 2021, 13, 1218. https://doi.org/10.3390/w13091218
Selvarajah H, Koike T, Rasmy M, Tamakawa K, Yamamoto A, Kitsuregawa M, Zhou L. Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. Water. 2021; 13(9):1218. https://doi.org/10.3390/w13091218
Chicago/Turabian StyleSelvarajah, Hemakanth, Toshio Koike, Mohamed Rasmy, Katsunori Tamakawa, Akio Yamamoto, Masuru Kitsuregawa, and Li Zhou. 2021. "Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka" Water 13, no. 9: 1218. https://doi.org/10.3390/w13091218
APA StyleSelvarajah, H., Koike, T., Rasmy, M., Tamakawa, K., Yamamoto, A., Kitsuregawa, M., & Zhou, L. (2021). Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. Water, 13(9), 1218. https://doi.org/10.3390/w13091218