Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters
Abstract
:1. Introduction
2. Worsening Prospects in the Near Future
3. Pathogens and Fecal Indicators in Municipal Sewage
4. Bacterial and Viral Fecal Indicators in Raw Sewage
5. Removal of Pathogens and Indicators by Typical Sewage Treatment Plants
6. Coliphages in Wastewater-Receiving Surface Waters
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Griffiths, J.K. Waterborne Diseases. In International Encyclopedia of Public Health; Quath, S.R., Ed.; Academic Press: London, UK; New York, NY, USA, 2017. [Google Scholar]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Preventing Diarrhea through Better Water, Sanitation and Hygiene. Exposures and Impacts in Low-and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Yang, K.; Lejeune, J.; Alsdorf, D.; Lü, B.; Shum, C.K.; Liang, S. Global Distribution of Outbreaks of Water-Associated Infectious Diseases. PLoS Negl. Trop. Dis. 2012, 6, e1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messner, M.; Shaw, S.; Regli, S.; Rotert, K.; Blank, V.; Soller, J. An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. J. Water Health 2006, 4, 201–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, S.; Benedict, K.; Fullerton, K.; Deng, L.; Cope, J.R.; Yoder, J.; Hill, V. 1887. Estimating the Burden of Waterborne Disease in the United States. Open Forum Infect. Dis. 2019, 6, S53–S54. [Google Scholar] [CrossRef] [Green Version]
- Gibney, K.B.; Sinclair, M.; O’Toole, J.; Leder, K. Burden of Disease Attributed to Waterborne Transmission of Selected Enteric Pathogens, Australia, 2010. Am. J. Trop. Med. Hyg. 2017, 96, 1400–1403. [Google Scholar] [CrossRef] [PubMed]
- Bartram, J.; Thyssen, N.; Gowers, A.; Pond, K.; Lack, T. Water and Health. A Joint Report from the European Environment Agency and the WHO Regional Office for Europe; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2002. [Google Scholar]
- Cassini, A.; Colzani, E.; Kramarz, P.; Kretzschmar, M.; Takkinen, J. Impact of food and water-borne diseases on European population health. Curr. Opin. Food Sci. 2016, 12, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Bernasconi, C.; Daverio, E.; Ghiani, M. Microbiology Dimension in EU Water Directives; European Communities, JRC, European Communities: Ispra, Italy, 2003. [Google Scholar]
- Kulinkina, A.V.; Shinee, E.; Rafael, B.; Herrador, G.; Nygård, K.; Schmoll, O. The Situation of Water-Related Infectious Diseases in the Pan-European Region; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Rooney, R. Burden of water-related diseases in the WHO European Region. In Proceedings of the First meeting of the Ad Hoc Project Facilitation Mechanism under the Protocol on Water and Health; UNECE, Ed.; UNECE: Geneve, Switzerland, 2008; p. 12. Available online: https://www.unece.org/fileadmin/DAM/env/water/meetings/ahpfm/Burden_of_water_diseases.pdf (accessed on 13 February 2021).
- Ritchie, H.; Roser, M. Sanitation. 2019. Available online: https://ourworldindata.org/sanitation (accessed on 13 February 2021).
- Peal, A.; Evans, B.; Ahilan, S.; Ban, R.; Blackett, I.; Hawkins, P.; Schoebitz, L.; Scott, R.; Sleigh, A.; Strande, L.; et al. Estimating Safely Managed Sanitation in Urban Areas; Lessons Learned From a Global Implementation of Excreta-Flow Diagrams. Front. Environ. Sci. 2020, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, A.; Reischer, G.; Jakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.; Linke, R.; Eiler, A.; et al. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Res. 2017, 124, 543–555. [Google Scholar] [CrossRef]
- Reder, K.; Flörke, M.; Alcamo, J. Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ. Model. Softw. 2015, 63, 251–263. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Report to Congress on Impacts and Control. of Combined Sewer Overflows and Sanitary Sewer Overflows Fact Sheet; United States Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Murphy, H.M.; Prioleau, M.D.; Borchardt, M.A.; Hynds, P.D. Review: Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol. J. 2017, 25, 981–1001. [Google Scholar] [CrossRef]
- Herrador, B.R.G.; Carlander, A.; Ethelberg, S.; De Blasio, B.F.; Kuusi, M.; Lund, V.; Löfdahl, M.; Macdonald, E.; Nichols, G.; Schönning, C.; et al. Waterborne outbreaks in the Nordic countries, 1998 to 2012. Eurosurveillance 2015, 20, 21160. [Google Scholar] [CrossRef] [Green Version]
- Gallay, A.; De Valk, H.; Cournot, M.; Ladeuil, B.; Hemery, C.; Castor, C.; Bon, F.; Mégraud, F.; Le Cann, P.; Desenclos, J.C. A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 2006, 12, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Fong, T.T.; Mansfield, L.S.; Wilson, D.L.; Schwab, D.J.; Molloy, S.L.; Rose, J.B. Massive Microbiological Groundwater Contamination Associated with a Waterborne Outbreak in Lake Erie, South Bass Island, Ohio. Environ. Health Perspect. 2007, 115, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, B.G.; Craun, G.F.; Yoder, J.S.; Hill, V.; Calderon, R.L.; Chen, N.; Lee, S.H.; A Levy, D.; Beach, M.J. Surveillance for waterborne-disease outbreaks associated with drinking water—United States, 2001–2002. MMWR Surveill. Summ. 2004, 53, 23–45. [Google Scholar] [PubMed]
- United Nations, Department of Economic and Social Affairs. The World’s Cities in 2018; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Lüthi, C.; Willetts, J.; Hoffmann, S. Editorial: City-Wide Sanitation: The Urban Sustainability Challenge. Front. Environ. Sci. 2020, 8, 585418. [Google Scholar] [CrossRef]
- Kohlitz, J.P.; Chong, J.; Willetts, J. Climate change vulnerability and resilience of water, sanitation, and hygiene services: A theoretical perspective. J. Water Sanit. Hyg. Dev. 2017, 7, 181–195. [Google Scholar] [CrossRef]
- Levy, K.; Woster, A.P.; Goldstein, R.S.; Carlton, E.J. Untangling the Impacts of Climate Change on Waterborne Diseases: A Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. Environ. Sci. Technol. 2016, 50, 4905–4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. The World Health Report 2007. A Safer Future. Global Public Health Security in the 21st Century; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Mills, F.; Willetts, J.; Evans, B.; Carrard, N.; Kohlitz, J. Costs, Climate and Contamination: Three Drivers for Citywide Sanitation Investment Decisions. Front. Environ. Sci. 2020, 8, 130. [Google Scholar] [CrossRef]
- Martin-Carrasco, F.; Garrote, L.; Iglesias, A.; Mediero, L. Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions. Water Resour. Manag. 2012, 27, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Baah, K.; Dubey, B.; Harvey, R.; McBean, E. A risk-based approach to sanitary sewer pipe asset management. Sci. Total Environ. 2015, 505, 1011–1017. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Crockett, C.S. The Role of Wastewater Treatment in Protecting Water Supplies Against Emerging Pathogens. Water Environ. Res. 2007, 79, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lüthi, C.; Sankara Narayan, S.A. Citywide inclusive sanitation: Achieving the urban water SDGs. In Perspectives Integrated Policy Briefs: Vol. 1. Urban Waters—How Does Water Impact and Is Impacted by Cities and Human Settlements? Camarena, L., Machado-Filho, H., Casagrande, L., Byrd, R., Tsakanika, A., Wotton, S., Eds.; World Centre for Sustainable Development, World Centre for Sustainable Development: Rio de Janeiro, Brazil, 2018; Volume 1, pp. 11–13. [Google Scholar]
- Mills, F.; Willetts, J.; Petterson, S.; Mitchell, C.; Norman, G. Faecal Pathogen Flows and Their Public Health Risks in Urban Environments: A Proposed Approach to Inform Sanitation Planning. Int. J. Environ. Res. Public Health 2018, 15, 181. [Google Scholar] [CrossRef] [Green Version]
- European Union Revision of the Urban Waste Water Treatment Directive. DG ENV C.2 Marine Environment and Water Industry. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=cellar:b731806e-c77f-11ea-adf7-01aa75ed71a1 (accessed on 15 February 2021).
- García-Aljaro, C.; Blanch, A.R.; Campos, C.; Jofre, J.; Lucena, F. Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J. Appl. Microbiol. 2019, 126, 701–717. [Google Scholar] [CrossRef] [Green Version]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Liu, W.T. Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Res. 2009, 43, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Zhang, R.; Angly, F.E.; Nakamura, S.; Hong, P.-Y.; Yasunaga, T.; Kamagata, Y.; Liu, W.-T. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ. Microbiol. 2012, 14, 441–452. [Google Scholar] [CrossRef]
- Ballesté, E.; Belanche-Muñoz, L.A.; Farnleitner, A.H.; Linke, R.; Sommer, R.; Santos, R.; Monteiro, S.; Maunula, L.; Oristo, S.; Tiehm, A.; et al. Improving the identification of the source of faecal pollution in water using a modelling approach: From multi-source to aged and diluted samples. Water Res. 2020, 171, 115392. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Sinclair, R.G.; Choi, C.Y.; Riley, M.R.; Gerba, C.P. Pathogen Surveillance through Monitoring of Sewer Systems. Virus Entry 2008, 65, 249–269. [Google Scholar] [CrossRef]
- Prüss-Üstün, A.; Bos, R.; Gore, F.; Bartram, J. Safer Water Better Health; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Fisman, D.N. Seasonality of Infectious Diseases. Annu. Rev. Public Health 2007, 28, 127–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girones, R.; Ferrús, M.A.; Alonso, J.L.; Rodriguez-Manzano, J.; Calgua, B.; Corrêa, A.D.A.; Hundesa, A.; Carratala, A.; Bofill-Mas, S. Molecular detection of pathogens in water: The pros and cons of molecular techniques. Water Res. 2010, 44, 4325–4339. [Google Scholar] [CrossRef]
- Vandewalle, J.L.; Goetz, G.W.; Huse, S.M.; Morrison, H.G.; Sogin, M.L.; Hoffmann, R.G.; Yan, K.; McLellan, S.L. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environ. Microbiol. 2012, 14, 2538–2552. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Excreta and Greywater Use in Agriculture. In Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Harwood, V.J.; Korajkic, A.; Ahmed, W.; Verbyla, M.; Iriarte, M.M.; Shanks, O.C. General faecal indicator bacteria and host-associated bacterial genetic markers of faecal pollution. In Global Water Pathogen Project; Rose, J.B., Jiménez-Cisneros, B., Eds.; Michigan State University: East Lansing, MI, USA, 2018. [Google Scholar]
- Fewtrell, L.; Bartram, J.; Ashbolt, N.J.; Grabow, W.O.K.; Snozzi, M. Indicators of microbial water quality. In Water Quality: Guidelines, Standards and Health; Fewtrell, L., Bartram, J., Eds.; World Health Organization: Geneva, Switzerland, 2001; pp. 289–316. [Google Scholar]
- Grabow, W. Bacteriophages: Update on application as models for viruses in water. Water SA 2004, 27, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Staley, C.; Dunny, G.M.; Sadowsky, M.J. Environmental and Animal-Associated Enterococci. Adv. Clin. Chem. 2014, 87, 147–186. [Google Scholar] [CrossRef]
- Gallard-Gongora, J.; Munck, K.; Jones, J.; Aslan, A. Coliphage as an Indicator of the Quality of Beach Water to Protect the Health of Swimmers in Coastal Georgia. J. Ga. Public Health Assoc. 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Jofre, J.; Lucena, F.; Blanch, A.R.; Muniesa, M. Coliphages as Model Organisms in the Characterization and Management of Water Resources. Water 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- McMINN, B.R.; Ashbolt, N.J.; Korajkic, A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett. Appl. Microbiol. 2017, 65, 11–26. [Google Scholar] [CrossRef] [Green Version]
- International Standardization Organization. Water Quality. Detection and Enumeration of Bacteriophages. Pt. 2: Enumeration of Somatic Coliphages. ISO-10705-2; International Standardization Organization: Geneva, Switzerland, 2000. [Google Scholar]
- United States Environmental Protection Agency. Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step Enrichment Procedure. In EPA 821R Office of Water Engineering and b Method 1602 Malespecific F and Somatic Coliphage in Water by Single Agar Layer SAL Procedure; United States Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- United States Environmental Protection Agency. Method 1602: Male-specific (F + ) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure April 2001; United States Environmental Protection Agency: Washington, DC, USA, 2001.
- Jebri, S.; Muniesa, M.; Jofre, J. General and host-associated bacteriophage indicators of fecal pollution. In Global Water Pathogens Project; Jiménez-Cisneros, B., Ed.; UNESCO: Lansing, MI, USA, 2017. [Google Scholar]
- Blanch, A.R.; Lucena, F.; Muniesa, M.; Jofre, J. Fast and easy methods for the detection of coliphages. J. Microbiol. Methods 2020, 173, 105940. [Google Scholar] [CrossRef]
- Méndez, J.; Toribio-Avedillo, D.; Mangas-Casas, R.; Martínez-González, J. Bluephage, a method for efficient detection of somatic coliphages in one hundred milliliter water samples. Sci. Rep. 2020, 10, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiba, M.; Senba, H.; Otagiri, H.; Prabhasankar, V.P.; Taniyasu, S.; Yamashita, N.; Lee, K.I.; Yamamoto, T.; Tsutsui, T.; Joshua, D.I.; et al. Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India. Ecotoxicol. Environ. Saf. 2015, 115, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Farrah, S.; VJ, H.; Levine, A.; Lukaskik, J.; Menendez, P.; TM, S. Reduction of Pathogens, Indicator Bacteria, and Alternative Indicators by Wastewater Treatment and Reclamation Processes; Final Report No. 00-PUM-2T; Water Environmental Research Foundation: Denver, CL, USA, 2004. [Google Scholar]
- Contreras-Coll, N.; Lucena, F.; Mooijman, K.; Havelaar, A.; Pierzo, V.; Boque, M.; Gawler, A.; Holler, C.; Lambiri, M.; Mirolo, G.; et al. Occurrence and levels of indicator bacteriophages in bathing waters throughout Europe. Water Res. 2002, 36, 4963–4974. [Google Scholar] [CrossRef]
- Blanch, A.R.; Belanche-Muñoz, L.; Bonjoch, X.; Ebdon, J.; Gantzer, C.; Lucena, F.; Ottoson, J.; Kourtis, C.; Iversen, A.; Kühn, I.; et al. Integrated Analysis of Established and Novel Microbial and Chemical Methods for Microbial Source Tracking. Appl. Environ. Microbiol. 2006, 72, 5915–5926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucena, F.; Mendez, X.; Moron, A.; Calderon, E.; Campos, C.; Guerrero, A.; Cardenas, M.; Gantzer, C.; Shwartzbrood, L.; Skraber, S.; et al. Occurrence and densities of bacteriophages proposed as indicators and bacterial indicators in river waters from Europe and South America. J. Appl. Microbiol. 2003, 94, 808–815. [Google Scholar] [CrossRef]
- Yahya, M.; Hmaïed, F.; Jebri, S.; Jofre, J.; Hamdi, M. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia. J. Appl. Microbiol. 2015, 118, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Dias, E.; Ebdon, J.; Taylor, H. The application of bacteriophages as novel indicators of viral pathogens in wastewater treatment systems. Water Res. 2018, 129, 172–179. [Google Scholar] [CrossRef]
- Muniesa, M.; Lucena, F.; Blanch, A.R.; Payán, A.; Jofre, J. Use of abundance ratios of somatic coliphages and bacteriophages of Bacteroides thetaiotaomicron GA17 for microbial source identification. Water Res. 2012, 46, 6410–6418. [Google Scholar] [CrossRef]
- Lucena, F.; Durán, A.; Morón, A.; Calderón, E.; Campos, C.; Gantzer, C.; Skraber, S.; Jofre, J. Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. J. Appl. Microbiol. 2004, 97, 1069–1076. [Google Scholar] [CrossRef]
- Al Aukidy, M.; Verlicchi, P. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area. Sci. Total Environ. 2017, 607-608, 483–496. [Google Scholar] [CrossRef]
- Poopipattana, C.; Suzuki, M.; Furumai, H. Impact of long-duration CSO events under different tidal change conditions on distribution of microbial indicators and PPCPs in Sumida river estuary of Tokyo Bay, Japan. Environ. Sci. Pollut. Res. 2021, 28, 7212–7225. [Google Scholar] [CrossRef]
- Bertrand-Krajewski, J.L.; Briat, P.; Scrivener, O. Sewer sediment production and transport modelling: A literature review. J. Hydraul. Res. 1993, 31, 435–460. [Google Scholar] [CrossRef]
- Nnane, D.E.; Ebdon, J.; Taylor, H. The dynamics of faecal indicator organisms in a temperate river during storm conditions. J. Water Clim. Chang. 2012, 3, 139–150. [Google Scholar] [CrossRef]
- Martín-Díaz, J.; Lucena, F.; Blanch, A.R.; Jofre, J. Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. Environ. Res. 2020, 182, 109133. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Deletic, A.; Alcazar, L.; Bratieres, K.; Fletcher, T.D.; McCarthy, D.T. Removal of Clostridium perfringens, Escherichia coli and F-RNA coliphages by stormwater biofilters. Ecol. Eng. 2012, 49, 137–145. [Google Scholar] [CrossRef]
- Surbeck, C.Q.; Jiang, S.C.; Ahn, J.H.; Grant, S.B. Flow Fingerprinting Fecal Pollution and Suspended Solids in Stormwater Runoff from an Urban Coastal Watershed. Environ. Sci. Technol. 2006, 40, 4435–4441. [Google Scholar] [CrossRef]
- Spellman, F.R. Handbook of Water and Wastewater Treatment Plant Operations, 4th ed.; CRC Press: Boca, Raton, FL, USA, 2020. [Google Scholar]
- Cheng, H.-W.A.; Broaders, M.A.; Lucy, F.E.; Mastitsky, S.E.; Graczyk, T.K. Determining potential indicators of Cryptosporidium oocysts throughout the wastewater treatment process. Water Sci. Technol. 2012, 65, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Costán-Longares, A.; Montemayor, M.; Payán, A.; Méndez, J.; Jofre, J.; Mujeriego, R.; Lucena, F. Microbial indicators and pathogens: Removal, relationships and predictive capabilities in water reclamation facilities. Water Res. 2008, 42, 4439–4448. [Google Scholar] [CrossRef]
- Koivunen, J.; Siitonen, A.; Heinonen-Tanski, H. Elimination of enteric bacteria in biological-chemical wastewater treatment and tertiary filtration units. Water Res. 2003, 37, 690–698. [Google Scholar] [CrossRef]
- Rechenburg, A.; Kistemann, T. Sewage effluent as a source of Campylobactersp in a surface water catchment. Int. J. Environ. Health Res. 2009, 19, 239–249. [Google Scholar] [CrossRef]
- Simmons, F.J.; Xagoraraki, I. Release of infectious human enteric viruses by full-scale wastewater utilities. Water Res. 2011, 45, 3590–3598. [Google Scholar] [CrossRef]
- Gantzer, C.; Maul, A.; Audic, J.M.; Schwartzbrod, L. Detection of Infectious Enteroviruses, Enterovirus Genomes, Somatic Coliphages, and Bacteroides fragilis Phages in Treated Wastewater. Appl. Environ. Microbiol. 1998, 64, 4307–4312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodder, W.J.; Husman, A.M.D.R. Presence of Noroviruses and Other Enteric Viruses in Sewage and Surface Waters in The Netherlands. Appl. Environ. Microbiol. 2005, 71, 1453–1461. [Google Scholar] [CrossRef] [Green Version]
- Gomila, M.; Solis, J.J.; David, Z.; Ramon, C.; Lalucat, J. Comparative reductions of bacterial indicators, bacteriophage-infecting enteric bacteria and enteroviruses in wastewater tertiary treatments by lagooning and UV-radiation. Water Sci. Technol. 2008, 58, 2223–2233. [Google Scholar] [CrossRef] [Green Version]
- Uemura, S.; Takahashi, K.; Takaishi, A.; Machdar, I.; Ohashi, A.; Harada, H. Removal of indigenous coliphages and fecal coliforms by a novel sewage treatment system consisting of UASB and DHS units. Water Sci. Technol. 2002, 46, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, J.; Schlafmann, K.; Otchwemah, R.; Botzenhart, K. Elimination of enteroviruses, other enteric viruses, F-specific coliphages, somatic coliphages and E. coli in four sewage treatment plants of southern Germany. J. Water Supply Res. Technol. 2000, 49, 127–138. [Google Scholar] [CrossRef]
- Grabow, W.O.K.; Holtzhausen, C.S.; de Villiers, J.C. Research on Bacteriophages as Indicators of Water Quality; Water Research Commission Report no. 321/1/93; Water Research Commission: Pretoria, South Africa, 1993. [Google Scholar]
- Lucena, F.; Jofre, J. Potential Use of Bacteriophages as Indicators of Water Quality and Wastewater Treatment Processes. In Bacteriophages in the Control of Food- and Waterborne Pathogens; ASM Press: Washington, DC, USA, 2014; pp. 103–118. [Google Scholar]
- Zhang, K.; Farahbakhsh, K. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: Implications to water reuse. Water Res. 2007, 41, 2816–2824. [Google Scholar] [CrossRef]
- Zanetti, F.; De Luca, G.; Sacchetti, R.; Stampi, S. Disinfection Efficiency of Peracetic Acid (PAA): Inactivation of Coliphages and Bacterial Indicators in a Municipal Wastewater Plant. Environ. Technol. 2007, 28, 1265–1271. [Google Scholar] [CrossRef]
- Francy, D.S.; Stelzer, E.A.; Bushon, R.N.; Brady, A.M.; Williston, A.G.; Riddell, K.R.; Borchardt, M.A.; Spencer, S.K.; Gellner, T.M. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res. 2012, 46, 4164–4178. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, S.A. Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone. Water Res. 1995, 29, 2483–2490. [Google Scholar] [CrossRef]
- Hejkal, T.W.; Wellings, F.M.; Lewis, A.L.; LaRock, P.A. Distribution of Viruses Associated with Particles in Wastewater. Appl. Environ. Microbiol. 1981, 41, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payment, P.; Morin, E.; Trudel, M. Coliphages and enteric viruses in the particulate phase of river water. Can. J. Microbiol. 1988, 34, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Characklis, G.W.; Dilts, M.J.; Simmons, O.D.; Likirdopulos, C.A.; Krometis, L.-A.H.; Sobsey, M.D. Microbial partitioning to settleable particles in stormwater. Water Res. 2005, 39, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Templeton, M.R.; Andrews, R.C.; Hofmann, R. Inactivation of particle-associated viral surrogates by ultraviolet light. Water Res. 2005, 39, 3487–3500. [Google Scholar] [CrossRef]
- Bradford, S.A.; Tadassa, Y.F.; Jin, Y. Transport of Coliphage in the Presence and Absence of Manure Suspension. J. Environ. Qual. 2006, 35, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.H.; Rose, J.B.; Jiang, S.C.; A Kellogg, C.; Dickson, L. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 1993, 59, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Manzanares, E.M.; Moriñigo, M.A.; Castro, D.; Balebona, M.; Sanchez, J.; Borrego, J. Influence of the faecal pollution of marine sediments on the microbial content of shellfish. Mar. Pollut. Bull. 1992, 24, 342–349. [Google Scholar] [CrossRef]
- Alcântara, F.; Almeida, M.A. Virological quality of the Ria de Aveiro: Validity of potential microbial indicators. Aquat. Ecol. 1995, 29, 419–425. [Google Scholar] [CrossRef]
- Skraber, S.; Schijven, J.; Italiaander, R.; Husman, A.M.D.R. Accumulation of enteric bacteriophage in freshwater sediments. J. Water Health 2009, 7, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Calero-Cáceres, W.; Méndez, J.; Martín-Díaz, J.; Muniesa, M. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environ. Pollut. 2017, 223, 384–394. [Google Scholar] [CrossRef]
- Mackowiak, M.; Leifels, M.; Hamza, I.A.; Jurzik, L.; Wingender, J. Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany. Sci. Total Environ. 2018, 626, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Krometis, L.A.H.; Characklis, G.W.; Simmons, O.D.; Dilts, M.J.; Likirdopulos, C.A.; Sobsey, M.D. Intra-storm variability in microbial partitioning and microbial loading rates. Water Res. 2007, 41, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, Y.; Young, B.; Yuen, Y.; Jiang, S.; Melendez, D.; Griffith, J.F.; Stewart, J.R. Decay of Coliphages in Sewage-Contaminated Freshwater: Uncertainty and Seasonal Effects. Environ. Sci. Technol. 2016, 50, 11593–11601. [Google Scholar] [CrossRef] [PubMed]
- Sinton, L.W.; Finlay, R.K.; Lynch, P.A. Sunlight Inactivation of Fecal Bacteriophages and Bacteria in Sewage-Polluted Seawater. Appl. Environ. Microbiol. 1999, 65, 3605–3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinton, L.W.; Hall, C.H.; Lynch, P.A.; Davies-Colley, R.J. Sunlight Inactivation of Fecal Indicator Bacteria and Bacteriophages from Waste Stabilization Pond Effluent in Fresh and Saline Waters. Appl. Environ. Microbiol. 2002, 68, 1122–1131. [Google Scholar] [CrossRef] [Green Version]
- Duran, A.; Muniesa, M.; Mendez, X.; Valero, F.; Lucena, F.; Jofre, J. Removal and inactivation of indicator bacteriophages in fresh waters. J. Appl. Microbiol. 2002, 92, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Mocé-Llivina, L.; Lucena, F.; Jofre, J. Enteroviruses and Bacteriophages in Bathing Waters. Appl. Environ. Microbiol. 2005, 71, 6838–6844. [Google Scholar] [CrossRef] [Green Version]
- Boehm, A.B.; Silverman, A.I.; Schriewer, A.; Goodwin, K. Systematic review and meta-analysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Res. 2019, 164, 114898. [Google Scholar] [CrossRef]
- Silverman, A.I.; Peterson, B.M.; Boehm, A.B.; McNeill, K.; Nelson, K.L. Sunlight Inactivation of Human Viruses and Bacteriophages in Coastal Waters Containing Natural Photosensitizers. Environ. Sci. Technol. 2013, 47, 1870–1878. [Google Scholar] [CrossRef]
- Noble, R.T.; Lee, I.M.; Schiff, K.C. Inactivation of indicator micro-organisms from various sources of faecal contamination in seawater and freshwater. J. Appl. Microbiol. 2004, 96, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.X.; Kitajima, M.; Gin, Y.H. Sunlight inactivation of somatic coliphage in the presence of natural organic matter. Sci. Total Environ. 2016, 541, 1–7. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Review of Coliphages as Possible Indicators of Fecal Contamination for Ambient Water Quality. 820-R-15–098; EPA Office of Water Office of Science and Technology Health and Ecological Criteria Division: Washington, DC, USA, 2015.
- McMINN, B.R.; Rhodes, E.R.; Huff, E.M.; Korajkic, A. Decay of infectious adenovirus and coliphages in freshwater habitats is differentially affected by ambient sunlight and the presence of indigenous protozoa communities. Virol. J. 2020, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Long, S.C.; Das, D.; Dorner, S.M. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J. Water Health 2011, 9, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Jiang, S.; Noble, R.; Chu, W. Human Adenoviruses and Coliphages in Urban Runoff-Impacted Coastal Waters of Southern California. Appl. Environ. Microbiol. 2001, 67, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Cox, N.; Vrey, M.; Grabow, W. The occurrence of hepatitis A and astroviruses in selected river and dam waters in South Africa. Water Res. 2001, 35, 2653–2660. [Google Scholar] [CrossRef]
- Ebdon, J.; Muniesa, M.; Taylor, H. The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment. Water Res. 2007, 41, 3683–3690. [Google Scholar] [CrossRef]
- Hamzah, A.; Kipli, S.H.; Ismail, S.R.; Una, R.; Sarmani, S. Microbiological Study in Coastal Water of Port Dickson, Malaysia. Sains Malays. 2011, 40, 93–99. [Google Scholar]
- Burbano-Rosero, E.M.; Ueda-Ito, M.; Kisielius, J.J.; Nagasse-Sugahara, T.K.; Almeida, B.C.; Souza, C.P.; Markman, C.; Martins, G.G.; Albertini, L.; Rivera, I.N.G. Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic Activity in São Paulo State, Brazil. Appl. Environ. Microbiol. 2011, 77, 4208–4216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarluzea, J.M.; Moreno, B.; Serrano, E.; Larburu, K.; Maiztegi, M.J.; Yarzabal, A.; Marina, L.S. Somatic coliphages and bacterial indicators of bathing water quality in the beaches of Gipuzkoa, Spain. J. Water Health 2007, 5, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Skraber, S.; Gassilloud, B.; Gantzer, C. Comparison of Coliforms and Coliphages as Tools for Assessment of Viral Contamination in River Water. Appl. Environ. Microbiol. 2004, 70, 3644–3649. [Google Scholar] [CrossRef] [Green Version]
- Wyer, M.D.; Wyn-Jones, A.P.; Kay, D.; Au-Yeung, H.-K.C.; Gironés, R.; López-Pila, J.; Husman, A.M.D.R.; Rutjes, S.; Schneider, O. Relationships between human adenoviruses and faecal indicator organisms in European recreational waters. Water Res. 2012, 46, 4130–4141. [Google Scholar] [CrossRef] [PubMed]
- Wanjugi, P.; Sivaganesan, M.; Korajkic, A.; McMinn, B.; Kelty, C.A.; Rhodes, E.; Cyterski, M.; Zepp, R.; Oshima, K.; Stachler, E.; et al. Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Res. 2018, 140, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, E.M.; Singh, G.; Scott, L.C.; Aw, T.G. Detection of coliphages and human adenoviruses in a subtropical estuarine lake. Sci. Total Environ. 2019, 649, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Nappier, S.P.; Hong, T.; Ichida, A.; Goldstone, A.; Eftim, S.E. Occurrence of coliphage in raw wastewater and in ambient water: A meta-analysis. Water Res. 2019, 153, 263–273. [Google Scholar] [CrossRef]
- Environment Protection and Heritage Council, Natural Resource Management Ministerial Council, Australian Health Ministers Conference. Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1); Environment Protection and Heritage Council, Natural Resource Management Ministerial Council, Australian Health Ministers Conference: Canberra, Australia, 2006. [Google Scholar]
- Muniesa, M.; Ballesté, E.; Imamovic, L.; Pascual-Benito, M.; Toribio-Avedillo, D.; Lucena, F.; Blanch, A.; Jofre, J. Bluephage: A rapid method for the detection of somatic coliphages used as indicators of fecal pollution in water. Water Res. 2018, 128, 10–19. [Google Scholar] [CrossRef]
Samples | Somatic Coliphages Method | Number of Samples | Geographical Location | E. coli CFU/100 mL a,b | Somatic Coliphages PFU/100 mL a | Reference |
---|---|---|---|---|---|---|
Fresh water (river) | ISO c | 392 | Spain, France, Colombia, Argentina | 5.0 × 103 (100) | 6.2 × 103 (100) | [67] |
Coastal and brackish water | USEPA d (strain C3000) | 12 | USA | >4.0 × 102 (100) | 0.5. to 3.3 × 102(100) | [121] |
Freshwater (river) | ISO | 25 | South Africa | 1.1 × 102–3.9 × 104 | 1.0 × 102–7.7 × 103 | [122] |
Freshwater (river) | ISO | 90 | Great Britain | 3.5 × 103 | 7.0 × 103 | [123] |
Coastal water | APHA e | 20 | Malaysia | 1.5 × 102–2 × 104 | 4-35 | [124] |
Sea water | APHA | 61 | Brazil | <1–8.4 × 103 (58) | <1–3.4 × 103 (32) | [125] |
Sea water | ISO | 806 | Spain | 30.1 (95) | 32.8 (72.6) | [126] |
Fresh and sea water | ISO | 139 | Nine European countries | 1.0 × 102 (90) | 1.7 × 102 (92) | [65] |
Freshwater (river) | ISO | 96 | France | 2.5 × 102 (100) | 3.0 × 103 (100) | [127] |
Fresh and marine | ISO | 290 | Nine European countries | 3.0 × 102 (85) | 1.1 × 102 (72.5) | [128] |
Fresh water (lake) | USEPA | 581 | USA | 2.0 × 103 (100) | 2.0 × 102 (96.4) | [129] |
Estuarine water (lake) | USEPA | 222 | USA | 77 (100) | 30 (93.7) | [130] |
Fresh water (river) | ISO | 23 | Japan | 10–3.2 × 104 (100) | 30–1.2 × 103 (100) | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jofre, J.; Lucena, F.; Blanch, A.R. Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. Water 2021, 13, 1110. https://doi.org/10.3390/w13081110
Jofre J, Lucena F, Blanch AR. Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. Water. 2021; 13(8):1110. https://doi.org/10.3390/w13081110
Chicago/Turabian StyleJofre, Juan, Francisco Lucena, and Anicet R. Blanch. 2021. "Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters" Water 13, no. 8: 1110. https://doi.org/10.3390/w13081110
APA StyleJofre, J., Lucena, F., & Blanch, A. R. (2021). Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. Water, 13(8), 1110. https://doi.org/10.3390/w13081110