# Analytical Models of Velocity, Reynolds Stress and Turbulence Intensity in Ice-Covered Channels

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material and Methods

#### 2.1. Vertical Distribution of Longitudinal Velocity

#### 2.2. Vertical Distribution of Reynolds Stress

#### 2.3. Vertical Distribution of Turbulence Intensity

## 3. Experimental Verification

## 4. Model Parameters

#### 4.1. ${m}_{b}$ and ${m}_{i}$

#### 4.2. ${n}_{b}$ and ${n}_{i}$

#### 4.3. ${K}_{0}$

## 5. Results and Discussion

#### 5.1. Model Verification

#### 5.2. Discussion

#### 5.2.1. Manning’s Coefficients ${n}_{b}$ and ${n}_{i}$

#### 5.2.2. Flow Parameters ${m}_{b}$ and ${m}_{i}$

#### 5.2.3. Comparison of ${h}_{m}$ and ${h}_{\tau}$

#### 5.2.4. Empirical Constants ${D}_{b}$, ${E}_{b}$, ${D}_{i}$ and ${E}_{i}$

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Davar, K.S.; Elhadi, N.A. Management of ice-covered rivers: Problems and perspectives. J. Hydrol.
**1981**, 51, 245–253. [Google Scholar] [CrossRef] - Chen, Y.; Wang, Z.; Zhu, D.; Liu, Z. Longitudinal dispersion coefficient in ice-covered rivers. J. Hydraul. Res.
**2016**, 54, 558–566. [Google Scholar] [CrossRef] - Chen, G.; Gu, S.; Li, B.; Zhou, M.; Huai, W. Physically based coefficient for streamflow estimation in ice-covered channels. J. Hydrol.
**2018**, 563, 470–479. [Google Scholar] [CrossRef] - Knack, I.; Shen, H.-T. Sediment transport in ice-covered channels. Int. J. Sediment Res.
**2015**, 30, 63–67. [Google Scholar] [CrossRef] - Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech.
**2015**, 774, 395–415. [Google Scholar] [CrossRef] - Lotsari, E.; Tarsa, T.; Mri, M.K.; Alho, P.; Kasvi, E. Spatial variation of flow characteristics in a subarctic meandering river in ice-covered and open-channel conditions: A 2d hydrodynamic modelling approach. Earth Surf. Process. Landf.
**2019**, 44, 1509–1529. [Google Scholar] [CrossRef][Green Version] - Turcotte, B.; Morse, B.; Bergeron, N.E.; Roy, A.G. Sediment transport in ice-affected rivers. J. Hydrol.
**2011**, 409, 561–577. [Google Scholar] [CrossRef] - Wang, F.; Huai, W.; Liu, M.; Fu, X. Modeling depth-averaged streamwise velocity in straight trapezoidal compound channels with ice cover. J. Hydrol.
**2020**, 585, 124336. [Google Scholar] [CrossRef] - Smith, B.T.; Ettema, R. Flow Resistance in Ice-Covered Alluvial Channels. J. Hydraul. Eng.
**1997**, 123, 592–599. [Google Scholar] [CrossRef] - Wang, J.; Wu, Y.; Sui, J.; Karney, B. Formation and movement of ice accumulation waves under ice cover—An experimental study. J. Hydrol. Hydromech.
**2019**, 67, 171–178. [Google Scholar] [CrossRef][Green Version] - Namaee, M.R.; Sui, J. Velocity profiles and turbulence intensities around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech.
**2020**, 68, 70–82. [Google Scholar] [CrossRef][Green Version] - Hanjalić, K.; Launder, B.E. Fully developed asymmetric flow in a plane channel. J. Fluid Mech.
**1972**, 51, 301–335. [Google Scholar] [CrossRef] - Parthasarathy, R.N.; Muste, M. Velocity Measurements in Asymmetric Turbulent Channel Flows. J. Hydraul. Eng.
**1994**, 120, 1000–1020. [Google Scholar] [CrossRef] - Tatinclaux, J.; Gogus, M. Asymmetric Plane Flow with Application to Ice Jams. J. Hydraul. Eng.
**1983**, 109, 1540–1554. [Google Scholar] [CrossRef] - Lau, Y.L.; Krishnappan, B.G. Sediment Transport Under Ice Cover. J. Hydraul. Eng.
**1985**, 111, 934–950. [Google Scholar] [CrossRef] - Muste, M.; Braileanu, F.; Ettema, R. Flow and sediment transport measurements in a simulated ice-covered channel. Water Resour. Res.
**2000**, 36, 2711–2720. [Google Scholar] [CrossRef] - Robert, A.; Tran, T. Mean and turbulent flow fields in a simulated ice-covered channel with a gravel bed: Some laboratory observations. Earth Surf. Process. Landforms
**2012**, 37, 951–956. [Google Scholar] [CrossRef] - Tao, L. Experimental Study on vertical velocity distribution of water flow under ice sheet. Eng. Constr.
**2015**, 29, 370–371. [Google Scholar] - Shen, H.T.; Harden, T.O. The effect of ice cover on vertical transfer in stream channels. J. Am. Water Resour. Assoc.
**1978**, 14, 1429–1439. [Google Scholar] [CrossRef] - Lau, Y.L.; Krishnappan, B.G. Ice Cover Effects on Stream Flows and Mixing. J. Hydraul. Div.
**1981**, 107, 1225–1242. [Google Scholar] [CrossRef] - Chen, G.; Gu, S.; Huai, W.; Zhang, Y. Boundary Shear Stress in Rectangular Ice-Covered Channels. J. Hydraul. Eng.
**2015**, 141, 06015005. [Google Scholar] [CrossRef] - Attar, S.; Li, S. Data-fitted velocity profiles for ice-covered rivers. Can. J. Civ. Eng.
**2012**, 39, 334–338. [Google Scholar] [CrossRef] - Sui, J.; Wang, J.; Yun, H.E.; Krol, F. Velocity profiles and incipient motion of frazil particles under ice cover. Int. J. Sediment Res.
**2010**, 25, 39–51. [Google Scholar] [CrossRef] - Larsen, P.A. Head losses caused by an ice cover on open channels. J. Boston Soc. Civ. Eng.
**1969**, 56, 45–67. [Google Scholar] - Sayre, W.W.; Song, G.B. Effects of Ice Covers on Alluvial Channel Flow and Sediment Transport Processes. IIHR Report No. 218, University of Lowa. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a066991.pdf (accessed on 16 April 2021).
- Uzuner, M.S. The composite roughness of ice covered streams. J. Hydraul. Res.
**1975**, 13, 79–102. [Google Scholar] [CrossRef] - Teal, M.J.; Ettema, R.; Walker, J.F. Estimation of Mean Flow Velocity in Ice-Covered Channels. J. Hydraul. Eng.
**1994**, 120, 1385–1400. [Google Scholar] [CrossRef] - Tsai, W.; Ettema, R. Modified Eddy Viscosity Model in Fully Developed Asymmetric Channel Flows. J. Eng. Mech.
**1994**, 120, 720–732. [Google Scholar] [CrossRef] - Li, Q.; Zeng, Y.-H.; Bai, Y. Mean flow and turbulence structure of open channel flow with suspended vegetation. J. Hydrodyn.
**2020**, 32, 314–325. [Google Scholar] [CrossRef] - Zhang, J.; Lei, J.; Huai, W.; Nepf, H. Turbulence and Particle Deposition Under Steady Flow Along a Submerged Seagrass Meadow. J. Geophys. Res. Oceans
**2020**, 125, 2019–015985. [Google Scholar] [CrossRef] - Rowiński, P.M.; Kubrak, J. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrol. Sci. J.
**2002**, 47, 893–904. [Google Scholar] [CrossRef][Green Version] - Nezu, I.; Rodi, W. Open-channel Flow Measurements with a Laser Doppler Anemometer. J. Hydraul. Eng.
**1986**, 112, 335–355. [Google Scholar] [CrossRef] - Zhong, Y.; Huai, W.; Chen, G. Analytical Model for Lateral Depth-Averaged Velocity Distributions in Rectangular Ice-Covered Channels. J. Hydraul. Eng.
**2019**, 145, 04018080. [Google Scholar] [CrossRef] - Huai, W.-X.; Xu, Z.-G.; Yang, Z.-H.; Zeng, Y.-H. Two dimensional analytical solution for a partially vegetated compound channel flow. Appl. Math. Mech.
**2008**, 29, 1077–1084. [Google Scholar] [CrossRef] - Bonakdari, H.; Larrarte, F.; Lassabatere, L.; Joannis, C. Turbulent velocity profile in fully-developed open channel flows. Environ. Fluid Mech.
**2008**, 8, 1–17. [Google Scholar] [CrossRef] - Zare, S.G.A.; Moore, S.A.; Rennie, C.D.; Seidou, O.; Ahmari, H.; Malenchak, J. Estimation of composite hydraulic resistance in ice-covered alluvial streams. Water Resour. Res.
**2016**, 52, 1306–1327. [Google Scholar] [CrossRef][Green Version] - Han, L.; Zeng, Y.; Chen, L.; Li, M. Modeling streamwise velocity and boundary shear stress of vegetation-covered flow. Ecol. Indic.
**2018**, 92, 379–387. [Google Scholar] [CrossRef] - Papanicolaou, A.N.; Elhakeem, M.; Hilldale, R. Secondary current effects on cohesive river bank erosion. Water Resour. Res.
**2007**, 43, 497–507. [Google Scholar] [CrossRef]

**Figure 2.**(

**a**) Schematic of the experimental flume, the dark blue denoting the flow in the flume and (

**b**) images of the experimental site.

**Figure 4.**Comparison of the measured and analytical velocities. Black squares denote the measured data and red lines denote the analytical ones.

**Figure 5.**Comparison of the measured and analytical Reynolds stresses. Black squares denote the measured data and red lines denote the analytical ones.

**Figure 6.**Comparison of the measured and analytical turbulence intensity. Black squares denote the measured data and red lines denote the analytical ones.

**Table 1.**Basic details of the characteristic parameters. $B$ is the width of the flume, $H$ is the water depth, $S$ is the bed slope and $Re$ is the Reynolds number.

Cases | Cover Condition | $\mathit{B}$ (m) | $\mathit{H}$ (m) | $\mathit{S}$ | $\mathit{R}\mathit{e}$ |
---|---|---|---|---|---|

1 | Full ice cover | 1 | 0.15 | 0.001 | 25590 |

2 | Full ice cover | 1 | 0.185 | 0.001 | 33725 |

3 | Symmetrical shore cover | 1 | 0.16 | 0.001 | 32480 |

4 | Symmetrical shore cover | 1 | 0.20 | 0.001 | 49160 |

5 | Asymmetrical shore cover | 1 | 0.16 | 0.001 | 31888 |

**Table 2.**Error statistics for the longitudinal velocity, Reynolds stress and turbulence intensity. $\overline{{\Delta}_{a}}$ is the average absolute error and $\overline{{\Delta}_{r}}$ is the average relative error.

Cases | Velocity | Reynolds Stress | Turbulence Intensity | |||
---|---|---|---|---|---|---|

$\overline{{\Delta}_{\mathit{a}}}(\mathbf{m}/\mathbf{s})$ | $\overline{{\Delta}_{\mathit{r}}}(\%)$ | $\overline{{\Delta}_{\mathit{a}}}(\mathbf{m}/\mathbf{s})$ | $\overline{{\Delta}_{\mathit{r}}}(\%)$ | $\overline{{\Delta}_{\mathit{a}}}(\mathbf{m}/\mathbf{s})$ | $\overline{{\Delta}_{\mathit{r}}}(\%)$ | |

1 | 0.0065 | 3.99 | 0.036 | 7.01 | 0.0013 | 10.52 |

2 | 0.0057 | 3.18 | 0.038 | 10.00 | 0.0011 | 8.09 |

3 | 0.0059 | 2.86 | 0.050 | 9.11 | 0.0012 | 8.05 |

4 | 0.011 | 5.25 | 0.082 | 8.42 | 0.0012 | 6.99 |

5 | 0.019 | 10.97 | 0.093 | 13.63 | 0.0019 | 12.54 |

Cases | ${\mathit{n}}_{\mathit{b}}$ | ${\mathit{n}}_{\mathit{i}}$ | ${\mathit{m}}_{\mathit{b}}$ | ${\mathit{m}}_{\mathit{i}}$ | ${\mathit{h}}_{\mathit{m}}/\mathit{H}$ | ${\mathit{h}}_{\mathit{\tau}}/\mathit{H}$ | ||
---|---|---|---|---|---|---|---|---|

Calculated | Measured | Calculated | Measured | |||||

1 | 0.013 | 0.018 | 6.35 | 4.84 | 0.43 | 0.56 | 0.37 | 0.35 |

2 | 0.012 | 0.017 | 7.13 | 5.31 | 0.43 | 0.58 | 0.43 | 0.44 |

3 | 0.015 | 0.017 | 5.41 | 4.96 | 0.48 | 0.42 | 0.43 | 0.43 |

4 | 0.014 | 0.02 | 6.57 | 4.30 | 0.40 | 0.44 | 0.39 | 0.44 |

5 | 0.015 | 0.019 | 5.63 | 4.59 | 0.45 | 0.54 | 0.39 | 0.39 |

Cases | ${\mathit{D}}_{\mathit{b}}$ | ${\mathit{E}}_{\mathit{b}}$ | ${\mathit{D}}_{\mathit{i}}$ | ${\mathit{E}}_{\mathit{i}}$ |

1 | 2.22 | 1.44 | 2.06 | 1.82 |

2 | 2.21 | 1.46 | 2.13 | 1.87 |

3 | 2.22 | 1.73 | 2.24 | 1.50 |

4 | 2.15 | 1.00 | 2.21 | 1.83 |

5 | 2.31 | 1.81 | 2.16 | 1.51 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, J.; Wang, W.; Li, Z.; Li, Q.; Zhong, Y.; Xia, Z.; Qiu, H. Analytical Models of Velocity, Reynolds Stress and Turbulence Intensity in Ice-Covered Channels. *Water* **2021**, *13*, 1107.
https://doi.org/10.3390/w13081107

**AMA Style**

Zhang J, Wang W, Li Z, Li Q, Zhong Y, Xia Z, Qiu H. Analytical Models of Velocity, Reynolds Stress and Turbulence Intensity in Ice-Covered Channels. *Water*. 2021; 13(8):1107.
https://doi.org/10.3390/w13081107

**Chicago/Turabian Style**

Zhang, Jiao, Wen Wang, Zhanbin Li, Qian Li, Ya Zhong, Zhaohui Xia, and Hunan Qiu. 2021. "Analytical Models of Velocity, Reynolds Stress and Turbulence Intensity in Ice-Covered Channels" *Water* 13, no. 8: 1107.
https://doi.org/10.3390/w13081107