Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Experimental Conditions
2.4. Sample Analysis
3. Results and Discussion
3.1. Effect of pH
3.2. Effect of Temperature
3.3. Effect of Tetracycline Concentration
3.4. Toxicity Profiles
3.5. Operational Cost
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sanchez-Melsio, A.; Borrego, C.M.; Barcelo, D.; Balcazar, J.L. Occurrence, of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Bartrons, M.; Peñuelas, J. Pharmaceuticals, and personal-care products in plants. Trends Plant Sci. 2017, 22, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, D.; Liu, X.; Hawkey, P.; Li, H.; Wang, Q.; Mao, Z.; Sun, J. Use, of and microbial resistance to antibiotics in China: A path to reducing antimicrobial resistance. J. Int. Med. Res. 2017, 45, 1768–1778. [Google Scholar] [CrossRef]
- Tao, W.C.; Hsu, B.M.; Ji, W.T.; Hsu, T.K.; Kao, P.M.; Hsu, C.P.; Shen, S.M.; Shen, T.Y.; Wan, T.J.; Huang, Y.L. Evaluation, of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci. Total Environ. 2014, 495, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Wu, X.; Shang, S.; Tao, X.M.; Jiang, S.X.; Gan, L. Catalytic, ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline, antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Roberts, C.M.; Schwarz, S. Tetracycline, and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. J. Environ. Qual. 2016, 45, 576–592. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Oturan, N.; Wang, Y.; Chen, L.; Oturan, M.A. Application, of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2-IrO2) anode. Chemosphere 2012, 87, 614–620. [Google Scholar] [CrossRef]
- Graham, G.G.; Pile, D.K. Tetracyclines. In Compendium of Inflammatory Diseases; Parnham, M.J., Ed.; Springer: Berlin, Germany, 2016; pp. 1231–1236. [Google Scholar]
- Kładna, A.; Kruk, I.; Michalska, T.; Berczyński, P.; Aboul-Enein, H.Y. Characterization, of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media. Luminescence 2011, 26, 611–615. [Google Scholar] [CrossRef]
- Oppenländer, T. Photochemical, Purification of Water and Air: Advanced Oxidation Processes (AOPs)-Principles, Reaction Mechanisms, Reactor Concepts; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 30. [Google Scholar]
- Nidheesh, V.P.; Zhou, M.; Oturan, M.A. An, overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 2018, 197, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl, radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Kurt, A.; Mert, B.K.; Özengin, N.; Sivrioğlu, Ö.; Yonar, T. Treatment, of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs). In Physico-Chemical Wastewater Treatment and Resource Recovery; IntechOpen: London, UK, 2017; Chapter 9. [Google Scholar] [CrossRef] [Green Version]
- Alver, A.; Kılıç, A. Catalytic, ozonation by iron coated pumice for the degradation of natural organic matters. Catalysts 2018, 8, 219. [Google Scholar] [CrossRef] [Green Version]
- Alver, A.; Basturk, E. Removal, of aspartame by catalytic ozonation with nano-TiO2 coated pumice. Desalin. Water Treat. 2019, 152, 268–275. [Google Scholar]
- Saeid, S.; Kråkström, M.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peurla, M.; Mikkola, J.-P.; Maël, L.; Kronberg, L.; Eklund, P.; et al. Synthesis, and characterization of metal modified catalysts for decomposition of ibuprofen from aqueous solutions. Catalysts 2020, 10, 786. [Google Scholar] [CrossRef]
- Rathod, B.S.; Kumar, N. Ozone—A review. Int. J. Clin. Biomed. Res. 2015, 1, 102–108. [Google Scholar]
- Okpala, R.C.O.; Bono, G.; Abdulkadir, A.; Madumelu, C.U. Ozone, (O3) process technology (OPT): An exploratory brief of minimal ozone discharge applied to shrimp product. Energy Procedia 2015, 75, 2427–2435. [Google Scholar] [CrossRef]
- Ghuge, P.S.; Saroha, A.K. Catalytic, ozonation for the treatment of synthetic and industrial effluents-Application of mesoporous materials: A review. J. Environ. Manag. 2018, 211, 83–102. [Google Scholar] [CrossRef]
- Etchepare, R.; Oliveira, H.; Nicknig, M.; Azevedo, A.; Rubio, J. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Miner. Eng. 2017, 112, 19–26. [Google Scholar] [CrossRef]
- Oliveira, H.; Azevedo, A.; Rubio, J. Nanobubbles, generation in a high-rate hydrodynamic cavitation tube. Miner. Eng. 2018, 116, 32–34. [Google Scholar] [CrossRef]
- He, D.; Sun, Y.; Xin, L.; Feng, J. Aqueous, tetracycline degradation by non-thermal plasma combined with nano-TiO2. Chem. Eng. J. 2014, 285, 18–25. [Google Scholar] [CrossRef]
- Wang, C.K.; Lin, C.-Y.; Liao, G.-Y. Degradation, of antibiotic tetracycline by ultrafine-bubble ozonation process. J. Water Process Eng. 2020, 37, 101463. [Google Scholar] [CrossRef]
- Wang, C.K.; Jian, J.J. Feasibility of tetracycline wastewater degradation by an enhanced sonolysis. J. Adv. Oxid. Technol. 2015, 18, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, Y.; Li, D. Degradation, of tetracycline in water by ultrasonic irradiation. Water Sci. Technol. 2013, 67, 715–721. [Google Scholar] [CrossRef]
- Wang, C.K.; Huang, B.M. Degradation, of tetracycline by advanced oxidation processes: Sono-Fenton and ozonation processes. Desalin. Water Treat. 2017, 96, 161–168. [Google Scholar] [CrossRef]
- Urbano, R.V.; Maniero, M.G.; Perez-Moya, M.; Guimaraes, J.R. Influence, of pH and ozone dose on sulfaquinoxaline ozonation. J. Environ. Manag. 2017, 195, 224–231. [Google Scholar] [CrossRef]
- Cao, J.; Xiong, Z.; Lai, B. Effect, of initial pH on the tetracycline (TC) removal by zero-valent iron: Adsorption, oxidation and reduction. Chem. Eng. J. 2018, 341, 492–499. [Google Scholar] [CrossRef]
- Wang, C.K.; Lin, C.K. Study on the degradation of tetramethylammonium hydroxide using ultrasonic and ozone procedures. Desalin. Water Treat. 2019, 145, 309–317. [Google Scholar] [CrossRef]
- Wang, C.K.; Shih, Y.H. Degradation, and detoxicity of diazinon by sono-Fenton and sono-Fenton-like processes. Sep. Purif. Technol. 2015, 140, 6–12. [Google Scholar] [CrossRef]
- Matsuura, K.; Nishiyama, T.; Sato, E.; Yamamoto, M.; Kamimura, T.; Takahashi, M.; Koike, K.; Horibe, H. Effect of temperature on degradation of polymers for photoresist using ozone microbubbles. J. Photopolym. Sci. Technol. 2016, 29, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Chuajedton, A.; Aoyagi, H.; Uthaibutra, J.; Pengphol, S.; Whangchai, K. Inactivation, of Escherichia coli O157:H7 by treatment with different temperatures of micro-bubbles ozone containing water. Int. Food Res. J. 2017, 24, 1006–1010. [Google Scholar]
- Wu, J.; Gao, H.; Yao, S.; Chen, L.; Gao, Y.; Zhang, H. Degradation, of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Sep. Purif. Technol. 2015, 147, 179–185. [Google Scholar] [CrossRef]
- Ai, C.; Zhou, D.; Wang, Q.; Shao, X.; Lei, Y. Optimization, of operating parameters for photocatalytic degradation of tetracycline using In2S3 under natural solar radiation. Sol. Energy 2015, 113, 34–42. [Google Scholar] [CrossRef]
- Mohsin, K.M.; Mohammed, A.A. Catalytic, ozonation for removal of antibiotic oxy-tetracycline using zinc oxide nanoparticles. Appl. Water Sci. 2021, 11. [Google Scholar] [CrossRef]
- Yao, H.; Pei, J.; Wang, H.; Fu, J. Effect of Fe(II/III) on tetracycline degradation under UV/VUV irradiation. Chem. Eng. J. 2017, 308, 193–201. [Google Scholar] [CrossRef]
- Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J. Toxicity, of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ. Contam. Toxicol. 2002, 42, 263–271. [Google Scholar] [CrossRef] [PubMed]
Concentration of Tetracycline (mg/L) | pH | Temperature (°C) | Degradation Efficiency of Tetracycline (%) | Mineralization Efficiency of Tetracycline (%) | Pseudo First-order Degradation Kinetic Rate (min−1) | Cell Viability (%) * |
---|---|---|---|---|---|---|
50 | 3 | 25 | 99.6 | 19.1 | 0.121 | 66.3 ± 14.5 |
50 | 5 | 25 | 99.8 | 20.7 | 0.119 | 67.6 ± 18.2 |
50 | 7 | 25 | 99.8 | 22.2 | 0.117 | 71.1 ± 18.1 |
50 | 9 | 25 | 99.7 | 24.6 | 0.112 | 74.7 ± 15.8 |
50 | 11 | 25 | 99.1 | 31.9 | 0.088 | 84.3 ± 13.5 |
50 | 3 | 15 | 99.7 | 11.3 | 0.122 | 62.2 ± 10.8 |
50 | 3 | 25 | 99.6 | 19.1 | 0.121 | 66.3 ± 14.5 |
50 | 3 | 35 | 99.6 | 25.2 | 0.119 | 76.5 ± 23.5 |
50 | 3 | 45 | 99.7 | 29.5 | 0.116 | 82.9 ± 21.2 |
50 | 3 | 55 | 99.5 | 36.2 | 0.115 | 87.5 ± 15.0 |
Concentration of Tetracycline (mg/L) | Degradation Efficiency of Tetracycline (%) | Mineralization Efficiency of Tetracycline (%) | Degradation of Tetracycline by Each Gram of O3 (g Tetracycline/g O3) | Pseudo First-Order Degradation Kinetic Rate (min−1) | Cell Viability (%) * |
---|---|---|---|---|---|
50 | 99.7 | 19.1 | 2.72 | 0.121 | 66.3 ± 14.5 |
100 | 98.6 | 16.1 | 2.90 | 0.098 | 65.1 ± 7.9 |
200 | 99.1 | 14.8 | 2.54 | 0.074 | 62.9 ± 5.8 |
500 | 90.8 | 2.9 | 5.68 | 0.043 | 57.6 ± 11.7 |
Dosage of Ozone (g) | Addition of tert-Butanol (mg/L) | Degradation Efficiency of Tetracycline (%) | Mineralization Efficiency of Tetracycline (%) | Pseudo First-Order Degradation Kinetic Rate (min−1) | Cell Viability (%) * |
---|---|---|---|---|---|
0.06 | - | 99.3 | 14.5 | 0.113 | 60.9 ± 11.2 |
0.08 | - | 99.6 | 19.1 | 0.121 | 66.3 ± 14.5 |
0.08 | 50 | 99.7 | 7.9 | 0.121 | 68.5 ± 5.8 |
0.08 | 100 | 99.8 | 7.6 | 0.122 | 68.6 ± 7.6 |
0.08 | 200 | 99.7 | 7.1 | 0.119 | 73.3 ± 11.7 |
0.08 | 400 | 99.6 | 6.5 | 0.119 | 74.5 ± 22.8 |
Methods | Tetracycline Removal | Tetracycline Concentration | Operational Cost | Operational Cost |
---|---|---|---|---|
Percentage (%) | (mg/L) | (USD/run) | (USD/kg Tetracycline Removal) | |
Ultra-fine bubbles ozonation | ||||
50 mg/L a | 98.5 | 50 | 0.185 | 125.27 |
100 mg/L b | 98.3 | 100 | 0.278 | 94.13 |
200 mg/L c | 98.3 | 200 | 0.555 | 94.11 |
500 mg/L d | 90.8 | 500 | 0.555 | 40.77 |
Oxygen e | 3.0 | 50 | 0.250 | 551.88 |
Air f | 0.6 | 50 | 0.014 | 1555.57 |
Milli-bubble O3 g | 98.0 | 50 | 0.539 | 330.06 |
Milli-bubble O3+Ultrasound h | 98.0 | 50 | 0.655 | 405.59 |
Milli-bubble O3+Fenton i | 98.0 | 50 | 0.313 | 193.63 |
Milli-bubble O3+ultrasound +Fenton j | 99.8 | 50 | 0.371 | 229.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Lin, C.-Y.; Liao, G.-Y. Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor. Water 2021, 13, 1058. https://doi.org/10.3390/w13081058
Wang C, Lin C-Y, Liao G-Y. Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor. Water. 2021; 13(8):1058. https://doi.org/10.3390/w13081058
Chicago/Turabian StyleWang, Chikang, Chien-Yu Lin, and Guan-Yun Liao. 2021. "Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor" Water 13, no. 8: 1058. https://doi.org/10.3390/w13081058
APA StyleWang, C., Lin, C.-Y., & Liao, G.-Y. (2021). Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor. Water, 13(8), 1058. https://doi.org/10.3390/w13081058