Water Temperature Simulation in a Tropical Lake in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Temperature Monitoring
2.2. Reservoir Water Temperature Model
2.2.1. Model Selection
2.2.2. Model Theory
2.3. Modeling Scheme
2.3.1. Boundary Conditions
2.3.2. Initial Conditions
2.3.3. Model Parameters
2.4. Parameter Sensitivity Analysis
3. Results
3.1. Model Verification
3.1.1. Water Level
3.1.2. Water Temperature
3.2. Vertical Water Temperature Structure
3.3. Parameter Sensitivity Analysis
3.3.1. Extinction Coefficient
3.3.2. Vertical Mixing Coefficient
3.3.3. Maximum Allowable Layer Thickness
3.4. Thermodynamic Characteristics of the Reservoir
4. Discussions
4.1. Model Verification and Thermodynamic Characteristics of the Reservoir
4.2. Parameter Sensitivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, M.F.; Li, L.; Li, J. Prediction of water temperature in stratified reservoir and effects on downstream irrigation area: A case study of Xiahushan reservoir. Phys. Chem. Earth Parts A/B/C 2012, 53–54, 38–42. [Google Scholar] [CrossRef]
- Qi, C.J.; Zhai, Y.; Lu, B.H.; Wang, Q.G. Research on vertical distribution of water temperature in different regulation reservoirs. Adv. Mater. Res. 2014, 955–959, 3190–3197. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci. Data 2017, 4. [Google Scholar] [CrossRef]
- Schmid, M.; Hunziker, S.; Wüest, A. Lake surface temperatures in a changing climate: A global sensitivity analysis. Clim. Chang. 2014, 124, 301–315. [Google Scholar] [CrossRef]
- Chen, Q.; Han, H.; Zhai, S.; Hu, W. Influence of solar radiation and water temperature on chlorophyll-a levels in Lake Taihu, China. Acta Sci. Circumstantiae 2009, 29, 199–206. [Google Scholar] [CrossRef]
- Sharma, S.; Jackson, D.A.; Minns, C.K. Quantifying the potential effects of climate change and the invasion of smallmouth bass on native lake trout populations across Canadian lakes. Ecography 2009, 32, 517–525. [Google Scholar] [CrossRef]
- Wang, H.D. Lakes in China; The Commercial Press: Beijing, China, 1996. [Google Scholar]
- Zheng, T.G.; Sun, S.K.; Liu, H.T.; Jiang, H.; Li, G.N. Effect of the elevation of old dam gap on water temperature discharged for Fengman rebuilt project. In Proceedings of the 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China, 15–16 October 2016; Volume 79, pp. 372–375. [Google Scholar] [CrossRef]
- Tuo, Y.; Deng, Y.; Li, J.; Li, N.; Li, K.; Wei, L.; Zhao, Z. Effects of dam reconstruction on thermal-ice regime of Fengman Reservoir. Cold Reg. Sci. Technol. 2017, 146, 223–235. [Google Scholar] [CrossRef]
- Ren, L.; Wu, W.; Song, C.; Zhou, X.; Cheng, W. Characteristics of reservoir water temperatures in high and cold areas of the Upper Yellow River. Environ. Earth Sci. 2019, 78. [Google Scholar] [CrossRef]
- Quan, Q.; Wang, Y. The Multi-Level intake structure of High-Altitude reservoirs in aquatic environments. J. Residuals Sci. Technol. 2016, 1, 155–165. [Google Scholar] [CrossRef]
- Wang, F.; Maberly, S.C.; Wang, B.; Liang, X. Effects of dams on riverine biogeochemical cycling and ecology. Inland Waters 2018, 8, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Wang, M.; Yu, Z. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr. 2014, 59, 1193–1202. [Google Scholar] [CrossRef]
- Qi, C.J.; Lu, B.H. Study of the temporal and spatial distribution of water temperature in ertan reservoir based on prototype observation. Adv. Mater. Res. 2013, 864–867, 2278–2287. [Google Scholar] [CrossRef]
- Lu, B.H.; Kang, Y.; Zhang, H.W.; Gu, H.H.; Jiang, S.T.; Hui, X.J.; Cao, Z.; Tung, Y.K. Field observation of water temperature profiles in large reservoirs with different features. In Proceedings of the 5th International Symposium on Integrated Water Resources Management, IWRM 2010 and the 3rd International Symposium on Methodology in Hydrology, Nanjing, China, 19–21 November 2010; pp. 359–368. [Google Scholar] [CrossRef]
- Chen, D.; Chen, G.; Zhao, Z.; Xu, H.; Xia, H.; Guo, Y.; Fan, X. Effect examination of stoplog stratified intake structure in guangzhao hydropower station in Guizhou—A case study of the pearl river basin Guangzhao hydropower station. Environ. Impact Assess. 2016, 38, 45–48. [Google Scholar] [CrossRef]
- Wang, F.; Ni, G.; Riley, W.J.; Tang, J.; Zhu, D.; Sun, T. Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir. Geosci. Model Dev. 2019, 12, 2119–2138. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Wang, F.; Ni, G. Heating impact of a tropical reservoir on downstream water temperature: A case study of the jinghong dam on the lancang river. Water 2018, 10, 951. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Armengol, J.; Carlos Garcia, J.; Comerma, M.; Roura, M.; Dolz, J.; Straskraba, M. The thermal structure of Sau Reservoir (NE: Spain): A simulation approach. Ecol. Model. 2000, 125, 109–122. [Google Scholar] [CrossRef]
- Gal, G.; Imberger, J.; Zohary, T.; Antenucci, J.; Anis, A.; Rosenberg, T. Simulating the thermal dynamics of Lake Kinneret. Ecol. Model. 2003, 162, 69–86. [Google Scholar] [CrossRef]
- Laurie, S.B.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA. Appl. Geochem. 2006, 21, 1184–1203. [Google Scholar] [CrossRef]
- David, F.B.; Hamilton, D.P.; Pilditch, C.A. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Model. 2008, 211, 411–423. [Google Scholar] [CrossRef]
- Asaeda, T.; Pham, H.S.; Nimal Priyantha, D.G.; Manatunge, J.; Hocking, G.C. Control of algal blooms in reservoirs with a curtain: A numerical analysis. Ecol. Eng. 2001, 16, 395–404. [Google Scholar] [CrossRef]
- Chen, L.; Qian, X.; Yang, Y.; Zhang, Y.; Qian, Y. Water-temperature simulation of Taihu lake based on DYRESM model and its application in the fore-warning of cyanobacteria-bloom. Environ. Prot. Sci. 2009, 35, 18–21. [Google Scholar] [CrossRef]
- Xie, X.; Qian, X.; Zhang, Y.; Qian, Y.; Tian, F. Effect on Chaohu Lake Water Environment of Water Transfer from Yangtze River to Chaohu Lake. Res. Environ. Sci. 2009, 22, 897–901. [Google Scholar] [CrossRef]
- Chen, D. A Preliminary Numerical Simulation of the Thermodynamic Conditions of Lugu Lake in Recent Years. Ph.D. Thesis, Jinan University, Guangzhou, China, 2015. [Google Scholar]
- Qi, C.; Chen, K.; Cao, X.; Zhai, Y.; Wu, L. Prediction of impact on water temperature by hydraulic and hydro-power engineering and key points in technical review. Environ. Impact Assess. Rev. 2016, 38, 1–4. [Google Scholar] [CrossRef]
- Orlob, G.T.; Selna, L.G. Temperature variations in deep reservoirs. J. Hydraul. Div. 1970, 96, 391–410. [Google Scholar] [CrossRef]
- Huber, W.C.; Harleman, D.R.F.; Ryan, P.J. Temperature prediction in stratified reservoirs. J. Hydraul. Div. 1972, 98, 645–666. [Google Scholar] [CrossRef]
- Luo, L.; Hamilton, D.; Lan, J.; McBride, C.; Trolle, D. Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo approach: Simulations of hypoxic events in a polymictic lake. Geosci. Model Dev. 2018, 11, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Hamilton, D.; Han, B. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand. Sol. Energy 2010, 84, 501–506. [Google Scholar] [CrossRef]
- Takkouk, S.; Casamitjana, X. Application of the DYRESM—CAEDYM model to the Sau Reservoir situated in Catalonia, Spain. Desalin. Water Treat. 2015, 57, 12453–12466. [Google Scholar] [CrossRef]
- Imberger, J.; Patterson, J.C. A dynamic reservoir simulation model—DYRESM: 5. In Transport Models for Inland and Coastal Waters; Fischer, H.B., Ed.; Academic Press: San Diego, CA, USA, 1981; pp. 310–361. [Google Scholar]
- Rinke, K.; Yeates, P.; Rothhaupt, K. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshw. Biol. 2010. [Google Scholar] [CrossRef]
- Perroud, M.; Goyette, S.; Martynov, A.; Beniston, M.; Anneville, O. Simulation of multiannual thermal profiles in deep lake geneva: A comparison of One-Dimensional lake models. Limnol. Oceanogr. 2009, 54, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Ralf, H. Numerical Modelling of Stratification in Lake Constance with the 1-D Hydrodynamic Model DYRESM. Master’s Thesis, University of Stuttgart, Stuttgart, Germany, 2003. [Google Scholar]
- Yeates, P.S.; Imberger, J. Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs. Int. J. River Basin Manag. 2003, 1, 297–319. [Google Scholar] [CrossRef]
- Imberger, J.; Patterson, J.C. Physical limnology. Adv. Appl. Mech. 1989, 27, 303–475. [Google Scholar] [CrossRef]
- Bayer, T.K.; Burns, C.W.; Schallenberg, M. Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand. Hydrobiologia 2013, 713, 53–71. [Google Scholar] [CrossRef]
- Weinberger, S.; Vetter, M. Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee. Ecol. Model. 2012, 244, 38–48. [Google Scholar] [CrossRef]
- Spigel, R.; Mckerchar, A. Lake Brunner Study: Modelling Thermal Stratification; NIWA Client Report: CHC2008—080; NIWA: Greymouth, New Zealand, 2008; p. 40. [Google Scholar]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Schallenberg, M.; James, M.; Hawes, I.; Howard-Williams, C. External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production. N. Zeal. J. Mar. Fresh. 1999, 33, 311–331. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Hamilton, D.P.; Yan, N.D. Calibrating the Dynamic Reservoir Simulation Model (DYRESM) and filling required data gaps for one-dimensional thermal profile predictions in a boreal lake. Limnol. Oceanogr. Methods 2007, 5, 484–494. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S. A hybrid model for river water temperature as a function of air temperature and discharge. Environ. Res. Lett. 2015, 10, 114011. [Google Scholar] [CrossRef]
- Caissie, D.; El-Jabi, N.; Satish, M.G. Modelling of maximum daily water temperatures in a small stream using air temperatures. J. Hydrol. 2001, 251, 14–28. [Google Scholar] [CrossRef]
- Webb, B.W.; Clack, P.D.; Walling, D.E. Water-air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 2003, 17, 3069–3084. [Google Scholar] [CrossRef]
- Sahoo, G.B.; Schladow, S.G.; Reuter, J.E. Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J. Hydrol. 2009, 378, 325–342. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Wang, D.; Wu, J. Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications. J. Hydrol. 2020, 590, 125240. [Google Scholar] [CrossRef]
- Zhu, B.F. Prediction of water temperature in reservoirs. J. Hydraul. Eng. 1985, 2, 12–21. [Google Scholar]
- Mullin, C.A.; Kirchhoff, C.J.; Wang, G.; Vlahos, P. Future projections of water temperature and thermal stratification in Connecticut reservoirs and possible implications for cyanobacteria. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
No. | Parameters | Unit | Calibration Value |
---|---|---|---|
1 | Aerodynamic transmission coefficients (CL, CS, CM) | / | 1.5 × 10−3 |
2 | Average water surface albedo | / | 0.09 |
3 | Long-wave emissivity at water surface εw | / | 0.96 |
4 | Critical wind speed Ucir | m/s | 3.00 |
5 | Entrainment coefficient constant ε | / | 0.05 |
6 | Light plume entrainment coefficient α | / | 0.083 |
7 | Coefficient of shear energy generation efficiency ηk | / | 0.06 |
8 | Coefficient of potential energy mixing efficiency ηp | / | 0.5 |
9 | Coefficient of wind disturbance efficiency ηs | / | 0.85 |
10 | Coefficient of effective surface area AC | m2 | 107 |
11 | Top diffusion coefficient KBBL | m2/s | 1.4 × 10−5 |
12 | Vertical mixing coefficient C | / | 50 |
13 | Minimum layer thickness Hmin | m | 0.5 |
14 | Maximum layer thickness Hma | m | 2 |
15 | Extinction coefficient ηA | m−1 | 0.70 |
Characteristics of Water Temperature | 26 April | 13 June | ||||
---|---|---|---|---|---|---|
Measured Value | Simulated Value | Error | Measured Value | Simulated Value | Error | |
Thickness of surface temperature layer (m) | 3.2 | 3.4 | 0.2 | 4.0 | 4.2 | 0.2 |
Water temperature of surface temperature layer (°C) | 29.1 | 29.1 | 0.0 | 32.1 | 33.5 | 1.4 |
Thermocline depth (m) | 9.7 | 9.1 | −0.6 | 9.0 | 8.4 | −0.6 |
Temperature gradient of thermocline (°C/m) | 0.9 | 1.1 | 0.2 | 1.3 | 1.6 | 0.3 |
Water temperature of hypolimnion (°C) | 19.0 | 19.0 | 0.0 | 19.1 | 19.0 | −0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Lu, B.; Qi, C.; Xiong, S.; Shen, W.; Ma, L. Water Temperature Simulation in a Tropical Lake in South China. Water 2021, 13, 913. https://doi.org/10.3390/w13070913
Gu H, Lu B, Qi C, Xiong S, Shen W, Ma L. Water Temperature Simulation in a Tropical Lake in South China. Water. 2021; 13(7):913. https://doi.org/10.3390/w13070913
Chicago/Turabian StyleGu, Hongbin, Baohong Lu, Changjun Qi, Si Xiong, Wenlong Shen, and Lejun Ma. 2021. "Water Temperature Simulation in a Tropical Lake in South China" Water 13, no. 7: 913. https://doi.org/10.3390/w13070913
APA StyleGu, H., Lu, B., Qi, C., Xiong, S., Shen, W., & Ma, L. (2021). Water Temperature Simulation in a Tropical Lake in South China. Water, 13(7), 913. https://doi.org/10.3390/w13070913