# An Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on Assessing Parameters of Water Balance Model

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Construction of Water Balance Model

#### 2.1.1. Authorized Consumptions

#### 2.1.2. Apparent Losses

#### 2.1.3. Real Losses

#### 2.1.4. Water Balance Model

#### 2.2. Approximate Location Information of Leak

#### 2.3. Parameters Assessment

## 3. Case Study

#### 3.1. Case 1

#### 3.1.1. Leak Detection Bases on Proposed Method

#### 3.1.2. Leak Detection Performance Validation

#### 3.1.3. Approximate Location Information of Leakage

#### 3.2. Case 2

#### 3.2.1. Parameters Assessment

#### 3.2.2. Approximate Location Information of Leak

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

WDNs | water distribution networks |

Adam | Adaptive moment estimation |

MNF | minimum night flow |

SCADA | supervisory control and data acquisition |

DMAs | district metering areas |

FAVAD | fixed and variable area discharge |

## References

- Fontanazza, C.M.; Notaro, V.; Puleo, V.; Nicolosi, P.; Freni, G. Contaminant Intrusion through Leaks in Water Distribution System: Experimental Analysis. Procedia Eng.
**2015**, 119, 426–433. [Google Scholar] [CrossRef][Green Version] - Liu, H.; Yan, Z. Pipeline small leak detection based on PSO-SVM. Oil Gas Field Surf. Eng.
**2019**, 38, 105–110. [Google Scholar] - Fei, L.; Tao, T. Leakage assessment and control method of water supply pipe network. China Water Wastewater
**2012**, 28, 35–39. [Google Scholar] - Lambert, A. Assessing Non-Revenue Water and its Components: A Practical Approach. Water
**2003**, 21, 50–51. [Google Scholar] - Oberascher, M.; Möderl, M.; Sitzenfrei, R. Water Loss Management in Small Municipalities: The Situation in Tyrol. Water
**2020**, 12, 3446. [Google Scholar] [CrossRef] - Van den Berg, C. Drivers of non-revenue water: A cross-national analysis. Util. Policy
**2015**, 36, 71–78. [Google Scholar] [CrossRef] - Kanakoudis, V.; Tsitsifli, S. Using the bimonthly water balance of a non-fully monitored water distribution network with seasonal water demand peaks to define its actual NRW level: The case of Kos town, Greece. Urban Water J.
**2014**, 11, 348–360. [Google Scholar] [CrossRef] - Lenzi, C.; Bragalli, C.; Bolognesi, A.; Fortini, M. Infrastructure Leakage Index Assessment in Large Water Systems. Procedia Eng.
**2014**, 2014, 1017–1026. [Google Scholar] [CrossRef][Green Version] - McKenzie, R.; Seago, C. Assessment of real losses in potable water distribution systems: Some recent developments. Water Sci. Technol. Water Supply
**2005**, 5, 33–40. [Google Scholar] [CrossRef] - Adedeji, K.B.; Hamam, Y.; Abu-Mahfouz, A.M. Impact of Pressure-Driven Demand on Background Leakage Estimation in Water Supply Networks. Water
**2019**, 11, 1600. [Google Scholar] [CrossRef][Green Version] - Alvisi, S.; Luciani, C.; Franchini, M. Using water consumption smart metering for water loss assessment in a DMA: A case study. Urban Water J.
**2019**, 16, 77–83. [Google Scholar] [CrossRef] - Xin, K.; Tao, T.; Lu, Y.; Xiong, X.; Li, F. Apparent Losses Analysis in District Metered Areas of Water Distribution Systems. Water Resour. Manag.
**2014**, 28, 683–696. [Google Scholar] [CrossRef] - Mutikanga, H.; Sharma, S.; Vairavamoorthy, K. Assessment of apparent losses in urban water systems. Water Environ. J.
**2011**, 25, 327–335. [Google Scholar] [CrossRef] - Marzola, I.; Alvisi, S.; Franchini, M. Analysis of MNF and FAVAD Models for Leakage Characterization by Exploiting Smart-Metered Data: The Case of the Gorino Ferrarese (FE-Italy) District. Water
**2021**, 13, 643. [Google Scholar] [CrossRef] - Hutton, C.; Kapelan, Z.; Vamvakeridou-Lyroudia, L.; Savic, D. Dealing with uncertainty in water distribution system models: A framework for real-time modeling and data assimilation. Water Resour. Plan. Manag.
**2014**, 140, 169–183. [Google Scholar] [CrossRef] - Van Zyl, J.; Clayton, C. The effect of pressure on leakage in water distribution systems. Proc. Inst. Civ. Eng. Water Manag.
**2007**, 160, 109–114. [Google Scholar] [CrossRef] - Sanz, G.; Perez, R.; Kapelan, Z.; Savic, D. Leak detection and localization through demand components calibration. J. Water Resour. Plan. Manag.
**2016**, 142, 1097–1098. [Google Scholar] [CrossRef][Green Version] - Xie, X.; Hou, D.; Tang, X.; Zhang, H. Leakage Identification in Water Distribution Networks with Error Tolerance Capability. Water Resour. Manag.
**2019**, 33, 1233–1247. [Google Scholar] [CrossRef] - Wu, Y.; Liu, S.; Wu, X.; Liu, Y.; Guan, Y. Burst detection in district metering areas using a data driven clustering algorithm. Water Res.
**2016**, 100, 28–37. [Google Scholar] [CrossRef] - Romano, M.; Kapelan, Z.; Savic, D. Automated detection of pipe bursts and other events in water distribution systems. J. Water Resour. Plan. Manag.
**2014**, 140, 457–467. [Google Scholar] [CrossRef][Green Version] - Laucelli, D.; Romano, M.; Savic, D.; Giustolisi, O. Detecting anomalies in water distribution networks using EPR modelling paradigm. J. Hydroinform.
**2016**, 18, 409–427. [Google Scholar] [CrossRef][Green Version] - Palau, C.; Arregui, F.; Carlos, M. Burst detection in water networks using principal component analysis. J. Water Resour. Plan. Manag.
**2012**, 138, 47–54. [Google Scholar] [CrossRef][Green Version] - Ye, G.; Fenner, R. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract.
**2011**, 2, 14–22. [Google Scholar] [CrossRef] - Huang, P.; Zhu, N.; Hou, D.; Chen, J.; Xiao, Y.; Yu, J.; Zhang, G.; Zhang, H. Real-Time Burst Detection in District Metering Areas in Water Distribution System Based on Patterns of Water Demand with Supervised Learning. Water
**2018**, 10, 1765. [Google Scholar] [CrossRef][Green Version] - Soldevila, A.; Fernandez-Canti, R.; Blesa, J.; Tornil-Sin, S.; Puig, V. Leak localization in water distribution networks using Bayesian classifiers. J. Process Control
**2017**, 55, 1–9. [Google Scholar] [CrossRef][Green Version] - Wu, Y.; Liu, S.; Wang, X. Distance-based burst detection using multiple pressure sensors in district metering areas. J. Water Resour. Plan. Manag.
**2018**, 144, 06018009. [Google Scholar] [CrossRef] - Puust, R.; Kapelan, Z.; Savic, D.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J.
**2010**, 7, 25–45. [Google Scholar] [CrossRef] - Tabesh, M.; Yekta, A.A.; Burrows, R. An integrated model to evaluate losses in water distribution systems. Water Resour. Manag.
**2009**, 23, 477–492. [Google Scholar] [CrossRef] - Farah, E.; Shahrour, I. Leakage detection using smart water system: Combination of water balance and automated minimum night flow. Water Resour. Manag.
**2017**, 31, 4821–4833. [Google Scholar] [CrossRef] - Schwaller, J.; van Zyl, J.; Kabaasha, A. Characterising the pressure-leakage response of pipe networks using the FAVAD equation. Water Sci. Technol. Water Supply
**2015**, 15, 1373–1382. [Google Scholar] [CrossRef] - Chen, X.; Hou, B.; Xiao, W.; Hou, X.; Wang, L. Research on Intelligent Measurement and Leakage Diagnosis System and Method of Industrial Enterprise Dynamic Water Balance. Sci. Technol. Innov. Appl.
**2020**, 26, 6–9. [Google Scholar] - Farley, M.; Trow, S. Losses in Water Distribution Networks: A Practitioners’ Guide to Assessment, Monitoring and Control. Water Intell. Online
**2005**. [Google Scholar] [CrossRef] - Almandoz, J.; Cabrera, E.; Arregui, F.; Cabrera, E.; Cobacho, R. Leakage assessment through water distribution network simulation. J. Water Resour. Plan. Manag.
**2005**, 131, 458–466. [Google Scholar] [CrossRef] - Kabaasha, A.; Piller, O.; van Zyl, J. Incorporating the Modified Orifice Equation into Pipe Network Solvers for More Realistic Leakage Modeling. J. Hydraul. Eng.
**2018**, 144. [Google Scholar] [CrossRef][Green Version] - Schwaller, J.; van Zyl, J. Modeling the pressure-leakage response of water distribution systems based on individual leak behavior. J. Hydraul. Eng.
**2015**, 141. [Google Scholar] [CrossRef] - Cassa, A.; van Zyl, J.; Laubscher, R. A numerical investigation into the effect of pressure on holes and cracks in water supply pipes. Urban Water J.
**2010**, 7, 109–120. [Google Scholar] [CrossRef] - Cassa, A.; Van Zyl, J.; Laubscher, R. Predicting the pressure-leakage slope of cracks in pipes subject to elastic deformations. J. Water Supply Res. Technol. AQUA
**2013**, 62, 214. [Google Scholar] [CrossRef] - Kingma, D.; Jimmy, B. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]

System input volume | Authorized consumptions | Metered consumption |

Unmetered consumption | ||

Water losses | Apparent losses | |

Real losses |

Detection Method | Recall Rates |
---|---|

WB-Method | 94.59% |

PCA | 45.83% |

Detection Method | ${\mathit{C}}_{\mathbf{EM}}\in [0.2,0.3)$ | ${\mathit{C}}_{\mathbf{EM}}\in [0.3,0.4)$ | ${\mathit{C}}_{\mathbf{EM}}\in [0.4,0.5)$ | ${\mathit{C}}_{\mathbf{EM}}\in [0.5,0.6)$ |
---|---|---|---|---|

WB-Method | 89.19% | 94.73% | 98.95% | 100% |

PCA | 23.53% | 33.33% | 36.84% | 48.15% |

Time Window Length | 4 | 6 | 8 |
---|---|---|---|

DMA1 | 78.4% | 83.8% | 86.5% |

DMA2 | 85.7% | 92.9% | 96.4% |

DMA3 | 94.6% | 97.3% | 97.3% |

DMA4 | 94.1% | 97.1% | 100% |

DMA5 | 96.4% | 96.4% | 100% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yu, J.; Zhang, L.; Chen, J.; Xiao, Y.; Hou, D.; Huang, P.; Zhang, G.; Zhang, H.
An Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on Assessing Parameters of Water Balance Model. *Water* **2021**, *13*, 867.
https://doi.org/10.3390/w13060867

**AMA Style**

Yu J, Zhang L, Chen J, Xiao Y, Hou D, Huang P, Zhang G, Zhang H.
An Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on Assessing Parameters of Water Balance Model. *Water*. 2021; 13(6):867.
https://doi.org/10.3390/w13060867

**Chicago/Turabian Style**

Yu, Jie, Li Zhang, Jinyu Chen, Yao Xiao, Dibo Hou, Pingjie Huang, Guangxin Zhang, and Hongjian Zhang.
2021. "An Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on Assessing Parameters of Water Balance Model" *Water* 13, no. 6: 867.
https://doi.org/10.3390/w13060867