From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.1.1. Raw and Deferrized Water Samples
2.1.2. Bottles
2.1.3. Caustic Cleaning Solution
2.2. Sample Preparation
2.2.1. Raw and Deferrized Water Samples (I, II)
2.2.2. Bottle Samples (IIIa, IIIb, V)
2.2.3. Caustic Cleaning Solution (IVa)
2.3. FTIR Imaging and Data Evaluation
2.4. Quality Assurance and Quality Control
2.4.1. Contamination Prevention
2.4.2. Blank Samples and LOD
2.4.3. Recovery Rates
2.4.4. Chemical Stability of MP
2.4.5. Verification of Size Measurement and Smallest Detectable Particle
2.4.6. RDF Model
3. Results
3.1. Quality Assurance and Quality Control
3.1.1. Blanks and LODs
3.1.2. Recovery Rates
3.1.3. Polymer Persistence
3.1.4. Particle Size Determination and Smallest Detectable Particle
3.1.5. RDF Evaluation
3.2. MP Concentrations
3.3. MP Polymer Types
3.4. MP Particle Size Distributions and Shapes
4. Discussion
MP Detection Method | (I) Raw Water [MP m−3] | (II) Deferrized/Treated Tap Water [MP m−3] | (IIIb) Cleaned Glass Bottles [MP L−1] | (V) Filled & Capped Glass Bottles [MP L−1] | |||||
---|---|---|---|---|---|---|---|---|---|
MP Concentration m−3 | MAPT | MP Concentration m−3 | MAPT | MP Concentration L−1 | MAPT | MP Concentration L−1 | MAPT | ||
This study (no blank subtraction) | µFTIR | 97 ± 53 (1 < LOD) | PVC 46% PEST 34% | 49 ± 3 (2 < LOD) | PVC 35%, PA 29% PEST 26% | all < LOD | n/a | 317 ± 257 | PE 81%, PS 11% |
Mintenig et al. [8] (>20 µm, blanks subtracted) | µFTIR | 3.7 ± 2.5 | PEST 63%, PVC 13%, Epoxy resin 13% | 0.9 ± 0.8 | PEST 62%, PA 24%, PVC 14% | n/a | n/a | n/a | n/a |
Kirstein et al. [9] (blanks subtracted) | µFTIR (and Pyr-GC/MS) | n/a | n/a | 171 ± 398 | PA 0–100%, PEST 0–100%, acrylic 0–29% | n/a | n/a | n/a | n/a |
Weber et al. [11] | µRaman | n/a | n/a | 0 | n/a | n/a | n/a | n/a | n/a |
Oßmann et al. [6,35] (excluding results for brand 1–2; no blank subtraction) | µRaman | n/a | n/a | n/a | n/a | 487 ± 257 | Styrene-butadiene-copolymer 35%, PE 22%, Phenoxy resin 18%, PS 10% | 212 ± 175 | PE 46%, PP 23% |
Schymanski et al. [7] (no blank subtraction) | µRaman | n/a | n/a | n/a | n/a | n/a | n/a | 28 ± 29 | PEST 41%, PE 35% |
5. Short Digression: Caustic Cleaning Solution Renewal
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BaF2 | barium fluoride |
EtOH | ethanol |
EvOH | ethylene vinyl alcohol |
FPA | focal plane array (detector) |
µFTIR | Fourier-transform-infrared imaging |
MAPT | most abundant polymer types |
MP | microplastics |
n/a | not available |
NaOH | sodium hydroxide |
PA | polyamide |
PE | polyethylene |
PEST | polyesters |
PET | polyethelene therephthalate |
PLA | polylactic acid |
PP | polypropylene |
PS | polystryrene |
PVC | polyvinylchloride |
Py-GCMS | pyrolysis-gas chromatography mass spectrometry |
SDS | sodium dodecylsulfate |
RDF | random decision forest |
References
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Tahir, A.; Williams, S.L.; Baxa, D.V.; Lam, R.; Miller, J.T.; Teh, F.-C.; Werorilangi, S.; Teh, S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 2015, 5, 14340. [Google Scholar] [CrossRef] [PubMed]
- Vinay Kumar, B.N.; Löschel, L.A.; Imhof, H.K.; Löder, M.G.J.; Laforsch, C. Analysis of microplastics of a broad size range in com-mercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. 2021, 269, 116147. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Galloway, T.S.; Salamatinia, B. The presence of microplastics in commercial salts from different countries. Sci. Rep. 2017, 7, srep46173. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef] [PubMed]
- Oßmann, B.E.; Sarau, G.; Holtmannspotter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pig-mented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Mintenig, S.; Löder, M.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total. Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Hensel, F.; Gomiero, A.; Iordachescu, L.; Vianello, A.; Wittgren, H.B. Drinking plastics?—Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS. Water Res. 2021, 188, 116519. [Google Scholar] [CrossRef]
- Winkler, A.; Santo, N.; Ortenzi, M.A.; Bolzoni, E.; Bacchetta, R.; Tremolada, P. Does mechanical stress cause microplastic release from plastic water bottles? Water Res. 2019, 166, 115082. [Google Scholar] [CrossRef]
- Weber, F.; Kerpen, J.; Wolff, S.; Langer, R.; Eschweiler, V. Investigation of microplastics contamination in drinking water of a German city. Sci. Total. Environ. 2021, 755, 143421. [Google Scholar] [CrossRef]
- Krottenthaler, M.; Glas, K. Brew Water. In Handbook of Brewing. Processes, Technology, Markets; Eßlinger, H.M., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 105–118. [Google Scholar]
- Blüml, S. Filling. In Handbook of Brewing. Processes, Technology, Markets; Eßlinger, H.M., Ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 275–320. [Google Scholar]
- Ben, J.; Mohamed, A.; Muduli, K. Optimizing Bottle Washer Performance in Cleaning Returnable Glass Bottles for Reuse in Beverage Packaging. Int. J. Adv. Sci. Technol. 2020, 29, 8149–8159. [Google Scholar]
- Blüml, S.; Fischer, S. Zugeordnete Anlagenbestandteile. In Handbook of Filling; (German original title: Handbuch der Fülltechnik); Kronseder, V., Ed.; Behr’s Verlag: Hamburg, Germany, 2009; pp. 495–541. [Google Scholar]
- VDM. Branchendaten 2019; VDM Verband Deutscher Mineralbrunnen e.V.: Bonn, Germany, 2019; Available online: https://www.mineralwasser.com/fileadmin/user_upload/2_Branchendaten_2019_neu.pdf (accessed on 1 December 2020).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lenz, R.; Labrenz, M. Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. Water 2018, 10, 1055. [Google Scholar] [CrossRef] [Green Version]
- Löder, M.G.J.; Imhof, H.K.; Ladehoff, M.; Löschel, L.A.; Lorenz, C.; Mintenig, S. Enzymatic purification of microplastics in en-vironmental samples. Environ. Sci. Technol. 2017, 14283–14292. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, B.; Steiner, D.; Renner, E.; Löder, M.G.J.; Laforsch, C.; Lohninger, H. A methodology for the fast identification and moni-toring of microplastics in environmental samples using random decision forest classifiers. Anal. Methods 2019, 11, 2277–2285. [Google Scholar] [CrossRef] [Green Version]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cowger, W.; Gray, A.; Christiansen, S.H.; De Frond, H.; Deshpande, A.D.; Hermabessiere, L.; Lee, E.; Mill, L.; Munno, K.; Ossmann, B.E.; et al. Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl. Spectrosc. 2020, 74, 989–1010. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.C.; Ball, H.; Cross, R.; Horton, A.A.; Jürgens, M.D.; Read, D.S.; Vollertsen, J.; Svendsen, C. Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environ. Sci. Technol. 2020, 54, 12326–12334. [Google Scholar] [CrossRef]
- Horton, A.A.; Cross, R.K.; Read, D.S.; Jürgens, M.D.; Ball, H.L.; Svendsen, C.; Vollertsen, J.; Johnson, A.C. Semi-automated analysis of microplastics in complex wastewater samples. Environ. Pollut. 2021, 268, 115841. [Google Scholar] [CrossRef]
- Waddell, E.N.; Lascelles, N.; Conkle, J.L. Microplastic contamination in Corpus Christi Bay blue crabs, Callinectes sapidus. Limnol. Oceanogr. Lett. 2020, 5, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Von der Esch, E.; Lanzinger, M.; Kohles, A.; Schwaferts, C.; Weisser, J.; Hofmann, T. Simple Generation of Suspensible Sec-ondary Microplastic Reference Particles via Ultrasound Treatment. Front. Chem. 2020, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-S.; Liang, Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- Ballabio, D.; Grisoni, F.; Todeschini, R. Multivariate comparison of classification performance measures. Chemom. Intell. Lab. Syst. 2018, 174, 33–44. [Google Scholar] [CrossRef]
- Olesen, K.B.; Stephansen, D.A.; Van Alst, N.; Vollertsen, J. Microplastics in a Stormwater Pond. Water 2019, 11, 1466. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Azzawi, M.S.M.; Kefer, S.; Weißer, J.; Reichel, J.; Schwaller, C.; Glas, K. Validation of Sample Preparation Methods for Mi-croplastic Analysis in Wastewater Matrices—Reproducibility and Standardization. Water 2020, 12, 2445. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Pivokonský, M.; Pivokonská, L.; Novotná, K.; Čermáková, L.; Klimtová, M. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Sci. Total Environ. 2020, 741, 140236. [Google Scholar] [CrossRef]
- Oßmann, B. Determination of microparticles, in particular microplastics in beverages. Ph.D. Thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany, 3 April 2020. [Google Scholar]
- Witzig, C.S.; Földi, C.; Wörle, K.; Habermehl, P.; Pittroff, M.; Müller, Y.K. When Good Intentions Go Bad—False Positive Mi-croplastic Detection Caused by Disposable Gloves. Environ. Sci. Technol. 2020, 54, 12164–12172. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, Z.; Lei, Y.; Tang, Y.; Wu, L.; Zhang, X.; Naidu, R.; Megharaj, M.; Fang, C. Microplastics generated when opening plastic packaging. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Blank Sample Type and Quantity | Raw Qater (I) n = 4 | Deferrized Water (II) n = 3 | Bottles (IIIa, IIIb, V) n = 4 | Caustic (IVa, IVb) n = 3 |
---|---|---|---|---|
MP in blanks (Mean ± Standard Deviation) | 12 ± 8 | 5 ± 5 | 13 ± 9 | 36 ± 15 |
LOD | 36 | 20 | 40 | 81 |
Process | Extraction From Stainless Steel Cartridge | Bottle Flush Process | Density Separation | Sieving and Re-Suspending Procedure |
---|---|---|---|---|
Recovery rate and standard deviation [%] | 58 ± 6 | 86 ± 8 | 63 ± 8 | 83 ± 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water 2021, 13, 841. https://doi.org/10.3390/w13060841
Weisser J, Beer I, Hufnagl B, Hofmann T, Lohninger H, Ivleva NP, Glas K. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water. 2021; 13(6):841. https://doi.org/10.3390/w13060841
Chicago/Turabian StyleWeisser, Jana, Irina Beer, Benedikt Hufnagl, Thomas Hofmann, Hans Lohninger, Natalia P. Ivleva, and Karl Glas. 2021. "From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water" Water 13, no. 6: 841. https://doi.org/10.3390/w13060841