Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China
Abstract
:1. Introduction
- (1)
- We investigated the hydrochemical characteristics and evolutionary processes of shallow groundwater in the Xinzhou Basin.
- (2)
- We assessed the groundwater quality used for drinking water and irrigation.
- (3)
- We evaluated the potential risks posed by noncarcinogenic factors to human health.
2. Materials and Methods
2.1. Brief Introduction to the Study Area
2.2. Field Sampling and Analytical Procedures
2.3. Entropy Water Quality Index (EWQI)
2.4. Human Health Risk Assessment
3. Results and Analysis
3.1. Groundwater Chemistry
3.1.1. Hydrochemical Parameters
3.1.2. Types of Groundwater Based on Hydrochemical Characteristics
3.1.3. Groundwater Evolution Mechanisms
3.2. Groundwater Quality Assessment
3.2.1. Groundwater Quality Assessment for Drinking
3.2.2. Groundwater Quality Assessment for Irrigation
3.3. Human Health Risk Assessment
4. Discussion
5. Conclusions
- (1)
- Ca-HCO3 and Ca·Mg-HCO3 were the dominant water types. The hydrochemical characteristics of groundwater were mainly governed by rock weathering and water–rock interactions.
- (2)
- Based on the EWQI classifications, 67.74% of the groundwater samples were classified as medium quality and drinkable. According to the values of SAR, RSC and %Na, 90.32% of the samples were suitable for irrigation, while the remaining samples were unfit for irrigation due to the high salinity of groundwater.
- (3)
- NO3−, NO2− and F− were the main contaminants of groundwater in the study area. The noncarcinogenic risks of some groundwater samples exceed acceptable levels. F− and NO3− were the main contaminants contributing to the total noncarcinogenic risk. The order of contaminant contribution to noncarcinogenic risk was F− > NO3− > NO2−.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adimalla, N.; Wu, J. Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 191–216. [Google Scholar] [CrossRef]
- Su, Z.; Wu, J.; He, X.; Elumalai, V. Temporal Changes of Groundwater Quality within the Groundwater Depression Cone and Prediction of Confined Groundwater Salinity Using Grey Markov Model in Yinchuan Area of Northwest China. Expo. Health 2020, 12, 447–468. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Wang, Y.; Ji, Y. Finding High-Quality Groundwater Resources to Reduce the Hydatidosis Incidence in the Shiqu County of Sichuan Province, China: Analysis, Assessment, and Management. Expo. Health 2020, 12, 307–322. [Google Scholar] [CrossRef]
- He, S.; Wu, J. Hydrogeochemical Characteristics, Groundwater Quality, and Health Risks from Hexavalent Chromium and Nitrate in Groundwater of Huanhe Formation in Wuqi County, Northwest China. Expo. Health 2019, 11, 125–137. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Wu, J.; Wei, M.; Ren, X.; Wang, D. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environ. Geochem. Health 2021, 43, 791–812. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater Quality for Drinking and Irrigation Purposes and Potential Health Risks Assessment: A Case Study from Semi-Arid Region of South India. Expo. Health 2019, 11, 109–123. [Google Scholar] [CrossRef]
- Bazeli, J.; Ghalehaskar, S.; Morovati, M.; Soleimani, H.; Masoumi, S.; Rahmani Sani, A.; Saghi, M.H.; Rastegar, A. Health risk assessment techniques to evaluate non-carcinogenic human health risk due to fluoride, nitrite and nitrate using Monte Carlo simulation and sensitivity analysis in Groundwater of Khaf County, Iran. Int. J. Environ. Anal. Chem. 2020, 1, 1–21. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi, M.S.; Siddiqui, A.U. Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ. Pollut. 2020, 259, 113711. [Google Scholar] [CrossRef]
- Singh, G.; Rishi, M.S.; Herojeet, R.; Kaur, L.; Sharma, K. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environ. Geochem. Health 2020, 42, 1833–1862. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Aamalawar, M.L.; Laxman Sahu, U. Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 654–672. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, J.; Li, L.; Long, Q.; Wei, A.; Liu, Z. Health Risk Assessment of Groundwater in Gaobeidian, North China: Distribution, Source, and Chemical Species of the Main Contaminants. Expo. Health 2020, 12, 427–446. [Google Scholar] [CrossRef]
- Ali, S.; Fakhri, Y.; Golbini, M.; Thakur, S.K.; Alinejad, A.; Parseh, I.; Shekhar, S.; Bhattacharya, P. Concentration of fluoride in groundwater of India: A systematic review, meta-analysis and risk assessment. Groundw. Sustain. Dev. 2019, 9, 100224. [Google Scholar] [CrossRef]
- Amiri, V.; Berndtsson, R. Fluoride occurrence and human health risk from groundwater use at the west coast of Urmia Lake, Iran. Arab. J. Geosci. 2020, 13, 921. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H.; Nandan, M.J. Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of south India. Ecotoxicol. Environ. Saf. 2020, 206, 111217. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Mthembu, P.P.; Elumalai, V.; Brindha, K.; Li, P. Hydrogeochemical Processes and Trace Metal Contamination in Groundwater: Impact on Human Health in the Maputaland Coastal Aquifer, South Africa. Expo. Health 2020, 12, 403–426. [Google Scholar] [CrossRef]
- Sheikhi, S.; Faraji, Z.; Aslani, H. Arsenic health risk assessment and the evaluation of groundwater quality using GWQI and multivariate statistical analysis in rural areas, Hashtroud, Iran. Environ. Sci. Pollut. Res. 2021, 28, 3617–3631. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Torres, M.; Paudel, P.; Hu, L.; Yang, G.; Chu, X. Assessing the Karst Groundwater Quality and Hydrogeochemical Characteristics of a Prominent Dolomite Aquifer in Guizhou, China. Water 2020, 12, 2584. [Google Scholar] [CrossRef]
- Su, F.; Wu, J.; He, S. Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an city, China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 158–175. [Google Scholar] [CrossRef]
- He, H.; Tian, C.; Fang, J.; Jin, G.; An, L. Evaluation of the environmental quality associated with near-surface groundwater characteristics in coal-mining areas based on rough set and uncertainty measure theory. Desalin. Water Treat. 2019, 152, 139–147. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, T.; Zheng, X.; Peng, H.; Wang, H.; Xin, J.; Zhang, B. Assessment of the hydrodynamics role for groundwater quality using an integration of GIS, water quality index and multivariate statistical techniques. J. Environ. Manag. 2020, 273, 111185. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, N.; Masood, N.; Khattak, J.A.; Hussain, I.; Khan, Q.; Farooqi, A. Health risk assessment and source identification of groundwater arsenic contamination using agglomerative hierarchical cluster analysis in selected sites from upper Eastern parts of Punjab province, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2020, 1–20. [Google Scholar] [CrossRef]
- Solangi, G.S.; Siyal, A.A.; Babar, M.M.; Siyal, P. Groundwater quality evaluation using the water quality index (WQI), the synthetic pollution index (SPI), and geospatial tools: A case study of Sujawal district, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 1529–1549. [Google Scholar] [CrossRef]
- Su, H.; Kang, W.; Xu, Y.; Wang, J. Assessing Groundwater Quality and Health Risks of Nitrogen Pollution in the Shenfu Mining Area of Shaanxi Province, Northwest China. Expo. Health 2018, 10, 77–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Y.; Chao, Y.; Fan, R.; Ren, F.; Xu, B.; Liu, Z. Hydrogeochemistry and quality assessment of groundwater in Jinghui canal irrigation district of China. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2349–2366. [Google Scholar] [CrossRef]
- Mukate, S.V.; Panaskar, D.B.; Wagh, V.M.; Baker, S.J. Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India. Environ. Dev. Sustain. 2020, 22, 3207–3238. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Kumar, D.; Subramani, T.; Roy, P.D. Sobol sensitivity approach for the appraisal of geomedical health risks associated with oral intake and dermal pathways of groundwater fluoride in a semi-arid region of south India. Ecotoxicol. Environ. Saf. 2020, 194, 110438. [Google Scholar] [CrossRef]
- Subba, R.N.; Sunitha, B.; Adimalla, N.; Chaudhary, M. Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environ. Geochem. Health 2020, 42, 579. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Liu, J.; Wu, J.; Zheng, C. Effect of groundwater quality on sustainability of groundwater resource: A case study in the North China Plain. J. Contam. Hydrol. 2015, 179, 132–147. [Google Scholar] [CrossRef]
- Xiao, Y.; Yin, S.; Hao, Q.; Gu, X.; Pei, Q.; Zhang, Y. Hydrogeochemical appraisal of groundwater quality and health risk in a near-suburb area of North China. J. Water Supply 2020, 69, 55–69. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Qian, H. Groundwater Quality Assessment Using Improved Water Quality Index (WQI) and Human Health Risk (HHR) Evaluation in a Semi-arid Region of Northwest China. Expo. Health 2020, 12, 487–500. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Han, D.; Xing, L.; Jin, M.; Currell, M.J.; Ying, H.; Song, X. Hydrogeochemical Indicators of Groundwater Flow Systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China. Environ. Manag. 2009, 44, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Liang, X.; Currell, M.J.; Song, X.; Chen, Z.; Jin, M.; Liu, C.; Han, Y. Environmental isotopic and hydrochemical characteristics of groundwater systems in Daying and Qicun geothermal fields, Xinzhou Basin, Shanxi, China. Hydrol. Process. 2010, 24, 3157–3176. [Google Scholar] [CrossRef]
- Han, D.M.; Liang, X.; Jin, M.G.; Currell, M.J.; Song, X.F.; Liu, C.M. Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J. Volcanol. Geotherm. Res. 2010, 189, 92–104. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the P.R. China (MEPC). Water Quality Sampling—Technical Regulation of the Preservation and Handling of Samples (HJ 493–2009); China Environmental Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Ministry of Health of the People’s Republic of China. Standards for Drinking Water Quality; GB 5749-2006; Standards Press of China: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Li, P.Y.; Qian, H.; Wu, J.H. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China. J. Chem. 2010, 7, S209–S216. [Google Scholar]
- Chen, J.; Huang, Q.; Lin, Y.; Fang, Y.; Qian, H.; Liu, R.; Ma, H. Hydrogeochemical Characteristics and Quality Assessment of Groundwater in an Irrigated Region, Northwest China. Water 2019, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Eslami, F.; Yaghmaeian, K.; Mohammadi, A.; Salari, M.; Faraji, M. An integrated evaluation of groundwater quality using drinking water quality indices and hydrochemical characteristics: A case study in Jiroft, Iran. Environ. Earth Sci. 2019, 78, 314. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, J.; Wang, Y.; Elumalai, V.; Subramani, T. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment in Hancheng City of Guanzhong Plain, China. Expo. Health 2020, 12, 469–485. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Deepali, M.; Subramani, T.; Bellows, B.C.; Li, P. Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of Southern India. Environ. Sci. Pollut. Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H.; Lyu, X.; Liu, H. Origin and assessment of groundwater pollution and associated health risk: A case study in an industrial park, northwest China. Environ. Geochem. Health 2014, 36, 693–712. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H. Groundwater Nitrate Contamination and Associated Health Risk for the Rural Communities in an Agricultural Area of Ningxia, Northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- Su, H.; Kang, W.; Xu, Y.; Wang, J. Assessment of Groundwater Quality and Health Risk in the Oil and Gas Field of Dingbian County, Northwest China. Expo. Health 2017, 9, 227–242. [Google Scholar] [CrossRef]
- Ahada, C.P.S.; Suthar, S. Assessment of Human Health Risk Associated with High Groundwater Fluoride Intake in Southern Districts of Punjab, India. Expo. Health 2019, 11, 267–275. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, A.; Li, J.; Yan, L.; Li, J. Groundwater Quality Evaluation and Health Risk Assessment in the Yinchuan Region, Northwest China. Expo. Health 2016, 8, 443–456. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Meng, X.; Li, M.; Zhang, Y. Appraising Groundwater Quality and Health Risks from Contamination in a Semiarid Region of Northwest China. Expo. Health 2016, 8, 361–379. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the P.R. China. Technical Guidelines for Risk Assessment of Contaminated Sites (HJ25.3–2014); China Environmental Science Press: Beijing, China, 2014. [Google Scholar]
- Zhu, L.; Yang, M.; Chen, X.; Liu, J. Health Risk Assessment and Risk Control: Drinking Groundwater in Yinchuan Plain, China. Expo. Health 2019, 11, 59–72. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Guo, W. Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Hum. Ecol. Risk Assess. 2019, 25, 11–31. [Google Scholar] [CrossRef]
- Li, P.; He, S.; Yang, N.; Xiang, G. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environ. Earth Sci. 2018, 77, 775. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Yang, N.; Jing, L.; Yu, P. Major Ion Chemistry and Quality Assessment of Groundwater in and Around a Mountainous Tourist Town of China. Expo. Health 2016, 8, 239–252. [Google Scholar] [CrossRef]
- Piper, A. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Eos Trans. Am. Geophys. Union 1994, 25, 914–923. [Google Scholar] [CrossRef]
- Mahanta, N.; Mishra, I.; Hatui, A.; Mahanta, P.S.; Sahoo, H.K.; Goswami, S. Geochemical appraisal of groundwater qualities and its uses in and around Maneswar Block of Sambalpur District, Odisha, India. Environ. Earth Sci. 2019, 79, 5. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- He, H.; Li, X.; Xiao, L.; Jian, C.; Wei, X. Optimizing the DRASTIC Method for NitratePollution in Groundwater VulnerabilityAssessments: A Case Study in China. Pol. J. Environ. Stud. 2018, 27, 95–107. [Google Scholar] [CrossRef]
- Jia, H.; Qian, H.; Qu, W.; Zheng, L.; Feng, W.; Ren, W. Fluoride Occurrence and Human Health Risk in Drinking Water Wells from Southern Edge of Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2019, 16, 1683. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A.; Farooqi, A.; Gao, X.; Zahir, S.; Noor, S.; Khattak, J.A. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 2020, 243, 125409. [Google Scholar] [CrossRef]
- Ganyaglo, S.Y.; Gibrilla, A.; Teye, E.M.; Owusu-Ansah, D.G.J.; Tettey, S.; Diabene, P.Y.; Asimah, S. Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere 2019, 233, 862–872. [Google Scholar] [CrossRef]
- Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Hajnal, E.; Chau, K.-W. Groundwater Quality Assessment for Sustainable Drinking and Irrigation. Sustainability 2020, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Jia, Z.; Guan, Z.; Zheng, F.; Wang, D. Nitrogen Utilization Characteristics and Their Influence on Groundwater in the Weishan Irrigation Region. Pol. J. Environ. Stud. 2020, 29, 4425–4435. [Google Scholar] [CrossRef]
- Bob, M.; Abd Rahman, N.; Taher, S.; Elamin, A. Multi-objective Assessment of Groundwater Quality in Madinah City, Saudi Arabia. Water Qual. Expo. Health 2015, 7, 53–66. [Google Scholar] [CrossRef]
- Li, D.; Zhai, Y.; Lei, Y.; Li, J.; Teng, Y.; Lu, H.; Xia, X.; Yue, W.; Yang, J. Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China. Ecotoxicol. Environ. Saf. 2021, 208, 111524. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N.; Li, P.; Qian, H. Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: A special emphasis on human health risk assessment (HHRA). Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1107–1124. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, H.; He, S.; Zhang, Y. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environ. Earth Sci. 2019, 78, 446. [Google Scholar] [CrossRef]
- Shirke, K.; Kadam, A.; Pawar, N. Temporal variations in hydro-geochemistry and potential health risk assessment of groundwater from lithological diversity of semi-arid region, Western Gujarat, India. Appl. Water Sci. 2020, 10, 1–20. [Google Scholar] [CrossRef]
- Hadi, R.; Ali, J.; Bahram, K.; Yadolah, F.; Afshin, G.; Mohammad, A.; Mansour, G.; Mahmuod, S.; Farzam, B.; Mohammad, S. Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1242–1250. [Google Scholar]
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Roy, P.D.; Srinivasamoorthy, K. Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, South India. Nat. Resour. Res. 2019, 29, 2369–2395. [Google Scholar] [CrossRef]
- Adimalla, N. Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: An approach of water quality index (WQI) and health risk assessment (HRA). Environ. Geochem. Health 2020, 42, 1725–1752. [Google Scholar] [CrossRef]
EWQI | Grade | Groundwater Quality |
---|---|---|
<25 | 1 | Excellent |
25–50 | 2 | Good |
50–100 | 3 | Medium |
100–150 | 4 | Poor |
>150 | 5 | Extremely poor |
Parameter | Mean | Unit | Men | Women | Children |
---|---|---|---|---|---|
C | The contaminant concentration | mg/L | - | - | - |
IR | Intake rate | L/day | 1.5 | 1.5 | 0.7 |
EF | Exposure frequency | Days/year | 365 | 365 | 365 |
ED | Exposure duration | Years | 30 | 30 | 12 |
BW | Body weight | kg | 70 | 55 | 15 |
AT | Average time | Days | 30 × 365 | 30 × 365 | 12 × 365 |
EV | Daily exposure frequency | - | 1 | 1 | 1 |
K | Permeability coefficient | cm/h | 0.001 | 0.001 | 0.001 |
t | Exposure time | h/day | 0.4 | 0.4 | 0.4 |
CF | Conversion factor | - | 0.001 | 0.001 | 0.001 |
H | Average resident height | cm | 165.3 | 153.4 | 99.4 |
Exposure Pathway | Noncarcinogens | NO3− | NO2− | F− |
---|---|---|---|---|
Direct ingestion | RfDi | 1.6 | 0.1 | 0.04 |
Dermal absorption | RfDi | 1 × 10−3 | 1 × 10−3 | 1 × 10−3 |
Sample | Unit | Number | Permissible Limit | Max | Min | Mean | SD | CV | National Standard [37] | Exceeding Standard |
---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | mg/L | 31 | 200 | 98.20 | 31.06 | 60.02 | 16.33 | 0.27 | - | - |
Mg2+ | mg/L | 31 | 50 | 54.72 | 7.30 | 19.18 | 9.57 | 0.50 | - | - |
K+ | mg/L | 31 | - | 5.70 | 0.50 | 2.05 | 1.22 | 0.60 | - | - |
Na+ | mg/L | 31 | 200 | 204.30 | 8.70 | 47.94 | 47.58 | 0.99 | 200 | 1 |
SO42− | mg/L | 31 | 250 | 355.42 | 2.40 | 75.38 | 85.06 | 1.13 | 250 | 3 |
Cl− | mg/L | 31 | 250 | 121.13 | 8.91 | 28.92 | 27.83 | 0.96 | 250 | 0 |
HCO3− | mg/L | 31 | 600 | 321.96 | 160.06 | 241.94 | 36.16 | 0.15 | - | - |
NO3− | mg/L | 31 | 20 | 43.60 | 1.00 | 12.96 | 9.37 | 0.72 | 20 | 5 |
NO2− | mg/L | 31 | 0.02 | 1.22 | 0.00 | 0.06 | 0.21 | 3.69 | 0.02 | 7 |
PH | - | 31 | 6.5~8.5 | 8.38 | 7.60 | - | - | - | 6.5~8.5 | 0 |
F− | mg/L | 31 | 1 | 3.50 | 0.00 | 0.60 | 0.74 | 1.24 | 1 | 3 |
TH | mg/L | 31 | 450 | 470.38 | 107.59 | 228.81 | 66.49 | 0.29 | 450 | 1 |
TDS | mg/L | 31 | 1000 | 904.07 | 211.45 | 374.10 | 163.47 | 0.44 | 1000 | 0 |
COD | mg/L | 31 | 3 | 1.35 | 4.26 | 1.90 | 0.52 | 0.27 | 3 | 2 |
SAR | - | 31 | - | 5.27 | 0.27 | 1.42 | 1.40 | 0.99 | - | - |
RSC | - | 31 | - | 1.91 | −5.05 | −0.44 | 1.25 | −2.88 | - | - |
Sample | HQoral | HQdermal | HItotal | ||||||
---|---|---|---|---|---|---|---|---|---|
Men | Women | Children | Men | Women | Children | Men | Women | Children | |
S1 | 0.29 | 0.37 | 0.63 | 1.39 × 10−3 | 1.51 × 10−3 | 2.36 × 10−4 | 0.29 | 0.37 | 0.63 |
S2 | 0.44 | 0.56 | 0.96 | 2.13 × 10−3 | 2.32 × 10−3 | 3.63 × 10−4 | 0.44 | 0.57 | 0.96 |
S3 | 0.53 | 0.68 | 1.16 | 2.57 × 10−3 | 2.80 × 10−3 | 4.37 × 10−4 | 0.53 | 0.68 | 1.16 |
S4 | 2.14 | 2.72 | 4.66 | 1.03 × 10−2 | 1.12 × 10−2 | 1.76 × 10−3 | 2.15 | 2.74 | 4.66 |
S5 | 0.28 | 0.36 | 0.62 | 1.37 × 10−3 | 1.50 × 10−3 | 2.34 × 10−4 | 0.29 | 0.36 | 0.62 |
S6 | 0.52 | 0.66 | 1.13 | 2.51 × 10−3 | 2.73 × 10−3 | 4.27 × 10−4 | 0.52 | 0.66 | 1.13 |
S7 | 0.55 | 0.71 | 1.21 | 2.68 × 10−3 | 2.91 × 10−3 | 4.55 × 10−4 | 0.56 | 0.71 | 1.21 |
S8 | 0.44 | 0.57 | 0.97 | 2.14 × 10−3 | 2.34 × 10−3 | 3.65 × 10−4 | 0.45 | 0.57 | 0.97 |
S9 | 1.24 | 1.57 | 2.69 | 5.96 × 10−3 | 6.49 × 10−3 | 1.01 × 10−3 | 1.24 | 1.58 | 2.69 |
S10 | 1.53 | 1.94 | 3.32 | 7.36 × 10−3 | 8.02 × 10−3 | 1.25 × 10−3 | 1.53 | 1.95 | 3.33 |
S11 | 0.14 | 0.18 | 0.31 | 6.84 × 10−4 | 7.45 × 10−4 | 1.16 × 10−4 | 0.14 | 0.18 | 0.31 |
S12 | 0.47 | 0.59 | 1.01 | 2.24 × 10−3 | 2.44 × 10−3 | 3.82 × 10−4 | 0.47 | 0.59 | 1.01 |
S13 | 0.40 | 0.51 | 0.87 | 1.93 × 10−3 | 2.10 × 10−3 | 3.28 × 10−4 | 0.40 | 0.51 | 0.87 |
S14 | 0.27 | 0.35 | 0.60 | 1.32 × 10−3 | 1.44 × 10−3 | 2.24 × 10−4 | 0.27 | 0.35 | 0.60 |
S15 | 0.75 | 0.95 | 1.63 | 3.61 × 10−3 | 3.93 × 10−3 | 6.14 × 10−4 | 0.75 | 0.96 | 1.63 |
S16 | 0.79 | 1.01 | 1.73 | 3.82 × 10−3 | 4.16 × 10−3 | 6.50 × 10−4 | 0.80 | 1.01 | 1.73 |
S17 | 0.29 | 0.37 | 0.63 | 1.39 × 10−3 | 1.52 × 10−3 | 2.37 × 10−4 | 0.29 | 0.37 | 0.63 |
S18 | 0.30 | 0.39 | 0.66 | 1.47 × 10−3 | 1.60 × 10−3 | 2.50 × 10−4 | 0.31 | 0.39 | 0.66 |
S19 | 0.18 | 0.23 | 0.40 | 8.83 × 10−4 | 9.62 × 10−4 | 1.50 × 10−4 | 0.18 | 0.23 | 0.40 |
S20 | 0.27 | 0.34 | 0.59 | 1.30 × 10−3 | 1.41 × 10−3 | 2.21 × 10−4 | 0.27 | 0.34 | 0.59 |
S21 | 0.44 | 0.57 | 0.97 | 2.14 × 10−3 | 2.33 × 10−3 | 3.65 × 10−4 | 0.45 | 0.57 | 0.97 |
S22 | 0.36 | 0.46 | 0.78 | 1.74 × 10−3 | 1.89 × 10−3 | 2.96 × 10−4 | 0.36 | 0.46 | 0.78 |
S23 | 0.63 | 0.81 | 1.38 | 3.05 × 10−3 | 3.33 × 10−3 | 5.20 × 10−4 | 0.64 | 0.81 | 1.38 |
S24 | 0.35 | 0.45 | 0.76 | 1.69 × 10−3 | 1.84 × 10−3 | 2.88 × 10−4 | 0.35 | 0.45 | 0.76 |
S25 | 0.02 | 0.02 | 0.04 | 8.84 × 10−5 | 9.62 × 10−5 | 1.50 × 10−5 | 0.02 | 0.02 | 0.04 |
S26 | 0.13 | 0.17 | 0.29 | 6.41 × 10−4 | 6.98 × 10−4 | 1.09 × 10−4 | 0.13 | 0.17 | 0.29 |
S27 | 0.65 | 0.83 | 1.43 | 3.16 × 10−3 | 3.44 × 10−3 | 5.37 × 10−4 | 0.66 | 0.84 | 1.43 |
S28 | 0.16 | 0.20 | 0.34 | 7.59 × 10−4 | 8.27 × 10−4 | 1.29 × 10−4 | 0.16 | 0.20 | 0.34 |
S29 | 0.49 | 0.62 | 1.06 | 2.34 × 10−3 | 2.55 × 10−3 | 3.99 × 10−4 | 0.49 | 0.62 | 1.06 |
S30 | 0.34 | 0.43 | 0.74 | 1.64 × 10−3 | 1.78 × 10−3 | 2.79 × 10−4 | 0.34 | 0.43 | 0.74 |
S31 | 0.34 | 0.43 | 0.74 | 1.64 × 10−3 | 1.79 × 10−3 | 2.79 × 10−4 | 0.34 | 0.43 | 0.74 |
min | 0.02 | 0.02 | 0.04 | 8.84 × 10−5 | 9.62 × 10−5 | 1.50 × 10−5 | 0.02 | 0.02 | 0.04 |
max | 2.14 | 2.72 | 4.66 | 1.03 × 10−2 | 1.12 × 10−2 | 1.76 × 10−3 | 2.15 | 2.74 | 4.66 |
Exceed number | 3 | 4 | 12 | 0 | 0 | 0 | 3 | 4 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Yao, L.; Mei, G.; Shang, Y.; Xiong, F.; Ding, Z. Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China. Water 2021, 13, 783. https://doi.org/10.3390/w13060783
Chen F, Yao L, Mei G, Shang Y, Xiong F, Ding Z. Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China. Water. 2021; 13(6):783. https://doi.org/10.3390/w13060783
Chicago/Turabian StyleChen, Feifei, Leihua Yao, Gang Mei, Yinsheng Shang, Fansheng Xiong, and Zhenbin Ding. 2021. "Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China" Water 13, no. 6: 783. https://doi.org/10.3390/w13060783
APA StyleChen, F., Yao, L., Mei, G., Shang, Y., Xiong, F., & Ding, Z. (2021). Groundwater Quality and Potential Human Health Risk Assessment for Drinking and Irrigation Purposes: A Case Study in the Semiarid Region of North China. Water, 13(6), 783. https://doi.org/10.3390/w13060783