Next Article in Journal
Water Quality and Life Expectancy: Parallel Courses in Time
Previous Article in Journal
Learning Case Study of a Shallow-Water Model to Assess an Early-Warning System for Fast Alpine Muddy-Debris-Flow
Article

Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data

1
Department of Civil Engineering, Institute of Urban Water Management, University of Kaiserslautern, Paul-Ehrlich-Str. 14, 67663 Kaiserslautern, Germany
2
Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
*
Author to whom correspondence should be addressed.
Academic Editor: Enrico Creaco
Water 2021, 13(6), 751; https://doi.org/10.3390/w13060751
Received: 27 January 2021 / Revised: 5 March 2021 / Accepted: 7 March 2021 / Published: 10 March 2021
(This article belongs to the Section Urban Water Management)
Operational and structural interventions in the field of stormwater management are usually planned based on long-term simulations using rainfall-runoff models. The simulation results are often highly uncertain due to imperfections of the model structure and inevitable uncertainties of input data. The trend towards monitoring of combined sewer overflows (CSO) structures produces more and more data which can be used to replace parts of the models and reduce uncertainty. In this study we use highly resolved online flow and quality monitoring data to optimize static outflow settings of CSO tanks. In a second step, the additional benefit of real time control (RTC) strategies is assessed. In both cases the aim is the reduction of CSO emissions. The methodology is developed on a conceptual drainage system with two CSO tanks and then applied to a case study area in Southern Germany with six tanks. A measured time series of six months is sufficient for reliable optimization results in the conceptual catchment as well as in the case study area system. In the investigated system the choice of the optimization objective (minimum overflow volume or total suspended solids (TSS) load) had no significant influence on the result. The presented method is particularly suitable for areas in which reliable monitoring data are available, but hydrological parameters of the catchment areas are uncertain. One strength of the proposed approach lies in the accurate representation of the distribution of emissions between the individual CSO structures over an entire system. This way emissions can be fitted to the sensitivity of the receiving water body at the specific outlets. View Full-Text
Keywords: modelling; CSO; urban drainage; sewer system; optimization; online monitoring modelling; CSO; urban drainage; sewer system; optimization; online monitoring
Show Figures

Figure 1

MDPI and ACS Style

Bachmann-Machnik, A.; Brüning, Y.; Ebrahim Bakhshipour, A.; Krauss, M.; Dittmer, U. Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data. Water 2021, 13, 751. https://doi.org/10.3390/w13060751

AMA Style

Bachmann-Machnik A, Brüning Y, Ebrahim Bakhshipour A, Krauss M, Dittmer U. Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data. Water. 2021; 13(6):751. https://doi.org/10.3390/w13060751

Chicago/Turabian Style

Bachmann-Machnik, Anna, Yannic Brüning, Amin Ebrahim Bakhshipour, Manuel Krauss, and Ulrich Dittmer. 2021. "Evaluation of Combined Sewer System Operation Strategies Based on Highly Resolved Online Data" Water 13, no. 6: 751. https://doi.org/10.3390/w13060751

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop