# Development of Fragility Curves for Piping and Slope Stability of River Levees

^{*}

## Abstract

**:**

## 1. Introduction

_{f}and equivalent reliability indices for three consequence levels, based on random finite-element analyses.

## 2. Methodology for the Development of Fragility Curves

#### 2.1. Slope Stability Evaluation

#### 2.2. Internal Erosion (Piping) Evaluation

## 3. Case Study Example: River Drava Levee

#### 3.1. Conducted Investigation Works

#### 3.2. Probabilistic Characterization of Soil Parameters

_{r}) has been obtained via correlation with an SPT test.

## 4. The Probabilistic Analyses Background

## 5. Results and Discussion

#### 5.1. Fragility Curves for Levee Slope Stability

#### 5.2. Fragility Curves for Internal Erosion (Piping)

#### 5.3. Discussion on Calculation Assumptions and Recommendations for Future Work

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Wolff, T.F. Reliability of Levee Systems. In Reliability-Based Design in Geotechnical Engineering; Phoon, K.-K., Ed.; Taylor & Francis: Abingdon, UK, 2008; pp. 448–496. [Google Scholar]
- Özer, I.E.; van Damme, M.; Jonkman, S.N. Towards an International Levee Performance Database (ILPD) and Its Use for Macro-Scale Analysis of Levee Breaches and Failures. Water
**2020**, 12, 119. [Google Scholar] [CrossRef][Green Version] - USACE. Investigation of Underseepage and Its Control, Lower Mississippi River Levees; USACE: Vicksburg, MI, USA, 1956. [Google Scholar]
- Fascetti, A.; Oskay, C. Dual Random Lattice Modeling of Backward Erosion Piping. Comput. Geotech.
**2019**, 105, 265–276. [Google Scholar] [CrossRef] - Martinović, K.; Reale, C.; Gavin, K. Fragility Curves for Rainfall-Induced Shallow Landslides on Transport Networks. Can. Geotech. J.
**2017**, 55, 852–861. [Google Scholar] [CrossRef][Green Version] - Doumbouya, L.; Guan, C.S.; Bowa, V.M. Influence of Rainfall Patterns on the Slope Stability of the Lumwana (the Malundwe) Open Pit. Geotech. Geol. Eng.
**2020**, 38, 1337–1346. [Google Scholar] [CrossRef] - Far, M.S.; Huang, H. A Hybrid Monte Carlo-Simulated Annealing Approach for Reliability Analysis of Slope Stability Considering the Uncertainty in Water Table Level. Procedia Struct. Integr.
**2019**, 22, 345–352. [Google Scholar] [CrossRef] - Wang, L.; Wu, C.; Gu, X.; Liu, H.; Mei, G.; Zhang, W. Probabilistic Stability Analysis of Earth Dam Slope under Transient Seepage Using Multivariate Adaptive Regression Splines. Bull. Eng. Geol. Environ.
**2020**, 79, 2763–2775. [Google Scholar] [CrossRef] - Hu, H.; Huang, Y.; Chen, Z. Seismic Fragility Functions for Slope Stability Analysis with Multiple Vulnerability States. Environ. Earth Sci.
**2019**, 78, 690. [Google Scholar] [CrossRef] - Pan, Q.; Qu, X.; Wang, X. Probabilistic Seismic Stability of Three-Dimensional Slopes by Pseudo-Dynamic Approach. J. Cent. South Univ.
**2019**, 26, 1687–1695. [Google Scholar] [CrossRef] - Xiong, X.; Shi, Z.; Xiong, Y.; Peng, M.; Ma, X.; Zhang, F. Unsaturated Slope Stability around the Three Gorges Reservoir under Various Combinations of Rainfall and Water Level Fluctuation. Eng. Geol.
**2019**, 261, 105231. [Google Scholar] [CrossRef] - Kaunda, R.B. A Neural Network Assessment Tool for Estimating the Potential for Backward Erosion in Internal Erosion Studies. Comput. Geotech.
**2015**, 69, 1–6. [Google Scholar] [CrossRef] - Robbins, B.A. Numerical Modeling of Backward Erosion Piping. Appl. Numer. Model. Geomech.
**2016**, 2016, 551–558. [Google Scholar] - Aboul Hosn, R.; Sibille, L.; Benahmed, N.; Chareyre, B. A Discrete Numerical Model Involving Partial Fluid-Solid Coupling to Describe Suffusion Effects in Soils. Comput. Geotech.
**2018**, 95, 30–39. [Google Scholar] [CrossRef][Green Version] - Yang, J.; Yin, Z.-Y.; Laouafa, F.; Hicher, P.-Y. Analysis of Suffusion in Cohesionless Soils with Randomly Distributed Porosity and Fines Content. Comput. Geotech.
**2019**, 111, 157–171. [Google Scholar] [CrossRef] - European Committee for Standardization (CEN). Eurocode 7—Geotechnical Design-Part 1: General Rules; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Thinh, K.D. Probabilistic Approach to the Design of Spread Footings: Application of Eurocode 7. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005; pp. 2797–2800. [Google Scholar]
- European Committee for Standardization (CEN). Eurocode—Basis of Structural Design; CEN: Brussels, Belgium, 2005. [Google Scholar]
- Canadian Standards Association (CSA). Canadian Highway Bridge Design Code; Canadian Standards Association: Mississauga, ON, Canada, 2014. [Google Scholar]
- Phoon, K.-K.; Kulhawy, F.H. Characterization of Geotechnical Variability. Can. Geotech. J.
**1999**, 36, 612–624. [Google Scholar] [CrossRef] - Low, B.K.; Phoon, K.-K. Reliability-Based Design and Its Complementary Role to Eurocode 7 Design Approach. Comput. Geotech.
**2015**, 65, 30–44. [Google Scholar] [CrossRef] - Fenton, G.A.; Naghibi, F.; Dundas, D.; Bathurst, R.J.; Griffiths, D.V. Reliability-Based Geotechnical Design in the 2014 Canadian Highway Bridge Design Code. Can. Geotech. J.
**2016**, 53, 236–251. [Google Scholar] [CrossRef] - Hamedifar, H.; Bea, R.G.; Pestana-Nascimento, J.M.; Roe, E.M. Role of Probabilistic Methods in Sustainable Geotechnical Slope Stability Analysis. Procedia Earth Planet. Sci.
**2014**, 9, 132–142. [Google Scholar] [CrossRef][Green Version] - Mazzoleni, M.; Bacchi, B.; Barontini, S.; Di Baldassarre, G.; Pilotti, M.; Ranzi, R. Flooding Hazard Mapping in Floodplain Areas Affected by Piping Breaches in the Po River, Italy. J. Hydrol. Eng.
**2014**, 19, 717–731. [Google Scholar] [CrossRef] - Schweckendiek, T.; Vrouwenvelder, A.C.W.M.; Calle, E.O.F. Updating Piping Reliability with Field Performance Observations. Struct. Saf.
**2014**, 47, 13–23. [Google Scholar] [CrossRef] - Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Nadim, F. Tools and Strategies for Dealing with Uncertainty in Geotechnics. In Probabilistic Methods in Geotechnical Engineering; Griffiths, D.V., Fenton, G.A., Eds.; CISM Courses and Lectures; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- USACE. Introduction to Probability and Reliability Methods for Use in Geotechnical Engineering; Engineering and Design; USACE: Washington, DC, USA, 1997. [Google Scholar]
- Santamarina, J.C.; Altschaeffl, A.G.; Chameau, J.L. Reliability of Slopes: Incorporating Qualitative Information. In Rockfall Prediction and Control and Landslide Case Histories; Transportation Research Record; Transportation Research Board: Washigton, DC, USA, 1992; pp. 1–5. ISBN 0-309-05206-8. [Google Scholar]
- Simm, J.; Tarrant, O. Development of Fragility Curves to Describe the Performance of UK Levee Systems. In Proceedings of the Twenty-Sixth International Congress on Large Dams, Vienna, Austria, 1–7 July 2018. [Google Scholar]
- TAW/ENW. Technical Report on Sand Boils (Piping); Hydraulic Engineering Reports; Rijkswaterstaat: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Hughes, S.A.; Nadal, N.C. Laboratory Study of Combined Wave Overtopping and Storm Surge Overflow of a Levee. Coast. Eng.
**2009**, 56, 244–259. [Google Scholar] [CrossRef] - Hughes, S.A.; Shaw, J.M.; Howard, I.L. Earthen Levee Shear Stress Estimates for Combined Wave Overtopping and Surge Overflow. J. Waterw. Port Coast. Ocean Eng.
**2012**, 138, 267–273. [Google Scholar] [CrossRef] - Xu, Y.; Li, L.; Amini, F. Slope Stability of Earthen Levee Strengthened by Roller-Compacted Concrete under Hurricane Overtopping Flow Conditions. Geomech. Geoengin.
**2013**, 8, 76–85. [Google Scholar] [CrossRef] - Kaur, A.; Sharma, D.R.K. Slope stability analysis techniques: A review. Int. J. Eng. Appl. Sci. Technol.
**2016**, 1, 52–57. [Google Scholar] - Petterson, K.E. The Early History of Circular Sliding Surfaces. Géotechnique
**1955**, 5, 275–296. [Google Scholar] [CrossRef] - Morgenstern, N.R.; Price, V.E. The Analysis of the Stability of General Slip Surfaces. Géotechnique
**1965**, 15, 79–93. [Google Scholar] [CrossRef] - Spencer, E. A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotechnique
**1967**, 17, 11–26. [Google Scholar] [CrossRef] - Akbas, B.; Huvaj, N. Probabilistic Slope Stability Analyses Using Limit Equilibrium and Finite Element Methods; IOS Press: Rotterdam, The Netherlands, 2015. [Google Scholar]
- Planès, T.; Mooney, M.A.; Rittgers, J.B.R.; Parekh, M.L.; Behm, M.; Sneider, R. Time-Lapse Monitoring of Internal Erosion in Earthen Dams and Levees Using Ambient Seismic Noise. Géotechnique
**2016**, 66, 301–312. [Google Scholar] [CrossRef][Green Version] - Hunter, R.P.; Bowman, E.T. Visualisation of Seepage-Induced Suffusion and Suffosion within Internally Erodible Granular Media. Géotechnique
**2018**, 68, 918–930. [Google Scholar] [CrossRef] - El Shamy, U.; Aydin, F. Multiscale Modeling of Flood-Induced Piping in River Levees. J. Geotech. Geoenviron. Eng.
**2008**, 134, 1385–1398. [Google Scholar] [CrossRef] - Liang, Y.; Jim Yeh, T.-C.; Wang, Y.-L.; Liu, M.; Wang, J.; Hao, Y. Numerical Simulation of Backward Erosion Piping in Heterogeneous Fields. Water Resour. Res.
**2017**, 53, 3246–3261. [Google Scholar] [CrossRef][Green Version] - Yerro, A.; Rohe, A.; Soga, K. Modelling Internal Erosion with the Material Point Method. Procedia Eng.
**2017**, 175, 365–372. [Google Scholar] [CrossRef] - Sellmeijer, J.B. Numerical Computation of Seepage Erosion below Dams (Piping). In Proceedings of the 3rd International Conference on Scour and Erosion (ICSE-3), Amsterdam, The Netherlands, 1–3 November 2006. [Google Scholar]
- Sellmeijer, H.; de la Cruz, J.L.; van Beek, V.M.; Knoeff, H. Fine-Tuning of the Backward Erosion Piping Model through Small-Scale, Medium-Scale and IJkdijk Experiments. Eur. J. Environ. Civ. Eng.
**2011**, 15, 1139–1154. [Google Scholar] [CrossRef] - Kramer, R. Piping Under Transient Conditions. Master’s Thesis, University of Twente, Enschede, The Netherlands, 9 October 2014. [Google Scholar]
- VNK2 Project Office Flood Risk in the Netherlands. VNK2: The Method in Brief; VNK2: Utrecht, The Netherlands, 2012. [Google Scholar]
- Sellmeijer, J.B.; Koenders, M.A. A Mathematical Model for Piping. Appl. Math. Model.
**1991**, 15, 646–651. [Google Scholar] [CrossRef] - Krušelj, Ž. Katastrofalne Poplave u Koprivničkoj i Đurđevačkoj Podravini 1965., 1966. i 1972. godine. Podrav. Časopis za Multidiscip. Istraživanja
**2017**, 16, 5–35. [Google Scholar] - Schneider, H.R. Definition and Determination of Characteristic Soil Properties; Balkema: Hamburg, Germany, 1997. [Google Scholar]
- Ahmed, A.; Soubra, A.-H. Extension of Subset Simulation Approach for Uncertainty Propagation and Global Sensitivity Analysis. Georisk
**2012**, 6, 162–176. [Google Scholar] [CrossRef][Green Version] - Andreev, S.; Zhivkov Zhelyazkov, A. Probability of Failure of an Embankment Dam Due to Slope Instability and Overtopping: First Order Second Moment Method for Assessment of Uncertainty. In Proceedings of the 13th International Benchmark Workshop on Numerical Analysis of Dams, Lausanne, Switzerland, 9–11 September 2015; pp. 207–215. [Google Scholar]
- Lumb, P. Safety Factors and the Probability Distribution of Soil Strength. Can. Geotech. J.
**1970**, 7, 225–242. [Google Scholar] [CrossRef] - Wolff, T.F. Analysis and Design of Embankment Dam Slopes: A Probabilistic Approach. Ph.D. Thesis, Purdue University, West Laffayete, IN, USA, 6 May 1985. [Google Scholar]
- Correlation Coefficient (Cohesion and Friction Angle) in an SWedge Probabilistic. Available online: https://www.rocscience.com/help/swedge/swedge/Correlation_Coefficient.htm (accessed on 18 May 2020).
- Phoon, K.-K.; Kulhawy, F.H. Evaluation of Geotechnical Property Variability. Can. Geotech. J.
**1999**, 36, 625–639. [Google Scholar] [CrossRef] - Fenton, G.A.; Griffiths, D.V. Statistics of Free Surface Flow through Stochastic Earth Dam. J. Geotech. Eng.
**1996**, 122, 427–436. [Google Scholar] [CrossRef] - Griffiths, D.V.; Fenton, G.A. The Random Finite Element Method (RFEM) in Stead Seepage Analysis. In Probabilistic Methods in Geotechnical Engineering; CISM Courses and Lectures; Springer: Berlin/Heidelberg, Germany, 2007; pp. 225–241. [Google Scholar]
- Chapuis, R.P.; Gill, D.E. Hydraulic Anisotropy of Homogeneous Soils and Rocks: Influence of the Densification Process. Bull. Int. Assoc. Eng. Geol.
**1989**, 39, 75–86. [Google Scholar] [CrossRef] - Budhu, M. Soil Mechanics and Foundations, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rahardjo, H.; Satyanaga, A.; Choon, L.E. Hydraulic Anisotropy Behavior of Compacted Soil. In Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea, 17–21 September 2017. [Google Scholar]
- Fredlund, D.G.; Scoular, R.E.G. Using Limit Equilibrium Concepts in Finite Element Slope Stability Analysis. In Proceedings of the International Symposium on Slope Stability Engineering, IS-Shikoku ’99, Matsuyama, Shikoku, Japan, 8–11 November 1999; pp. 31–47. [Google Scholar]
- Hewlett, H.W.M.; Boorman, L.A.; Bramley, M.E. Design of Reinforced Grass Waterways; Construction and Industry Research and Information Association: London, UK, 1987; p. 116. [Google Scholar]
- Powledge, G.R.; Ralston, D.C.; Miller, P.; Chen, Y.H.; Clopper, P.E.; Temple, D.M. Mechanics of Overflow Erosion on Embankments. II: Hydraulic and Design Considerations. J. Hydraul. Eng.
**1989**, 115, 1056–1075. [Google Scholar] [CrossRef] - Hughes, S.A. Combined Wave and Surge Overtopping of Levees: Flow Hydrodynamics and Articulated Concrete Mat. Stability; USACE, Engineer Research and Developement Center, Coastal and Hydraulics Laboratory: Washington, DC, USA, 2008. [Google Scholar]
- GEO-SLOPE. Stability Modeling with GeoStudio; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2017. [Google Scholar]
- European Committee for Standardization (CEN). Eurocode 8—Design of Structures for Earthquake Resistance–Part. 1: General Rules, Seismic Actions and Rules for Buildings; CEN: Brussels, Belgium, 2004. [Google Scholar]
- European Committee for Standardization (CEN). Eurocode 8–Design of Structures for Earthquake Resistance–Part. 5: Foundations, Retaining Structures and Geotechnical Aspects; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Pickles, A.; Sandham, R. Application of Eurocode 7 to the Design of Flood Embankments (C749); CIRIA: London, UK, 2014; ISBN 978-0-86017-754-8. [Google Scholar]
- Van der Meer, J.W.; ter Horst, W.L.A.; van Valzen, E.H. Calculation of Fragility Curves for Flood Defence Assets. In Flood Risk Management: Research and Practice; Taylor & Francis Group: London, UK, 2009; pp. 567–573. [Google Scholar]

**Figure 1.**Levee failure mechanisms analysed in the study: slope instability (

**a**) and internal erosion (

**b**).

**Figure 5.**Flow regimes during overflow of a dam, redrawn from [65].

**Figure 7.**Fragility curves for landside slope stability with respect to varying hydraulic conductivities.

Material | $\mathsf{\gamma}\left[\mathsf{k}\mathsf{N}/{\mathsf{m}}^{3}\right]$ | $\mathsf{\phi}[\xb0]$ | $\mathsf{c}\left[\mathsf{k}\mathsf{P}\mathsf{a}\right]$ | ${\mathsf{k}}_{\mathsf{x}}\left[\mathsf{m}/\mathsf{s}\right]\left(\mathbf{Mean}\right)$ | ${k}_{y}/{k}_{x}[-]$ | |||
---|---|---|---|---|---|---|---|---|

$\mathsf{\mu}\left[\mathsf{k}\mathsf{P}\mathsf{a}\right]$ | $\mathsf{C}\mathsf{o}\mathsf{V}[-]$ | $\mathsf{\mu}\left[\mathsf{k}\mathsf{P}\mathsf{a}\right]$ | $\mathsf{C}\mathsf{o}\mathsf{V}[-]$ | SDC1 | SDC2 | |||

Levee body | 18 | 26 | 0.15 | 2 | 0.30 | 1 × 10^{−8} | 1 × 10^{−8} | 0.5 |

Crown and berm | 20 | 30 | 0.12 | 1 | 0.30 | 1 × 10^{−4} | 1 × 10^{−8} | 0.5 |

Foundation soil | 19 | 36 | - | 0 | - | 1 × 10^{−5} | 0.5 | |

Distribution | constant | normal | log-normal | constant | constant |

Material | ${\mathsf{k}}_{\mathsf{x}}\left[\mathsf{m}/\mathsf{s}\right]$ | ${D}_{r}[\%]$ | ${k}_{y}/{k}_{x}[-]$ | |
---|---|---|---|---|

$\mathbf{Median}\left[\mathsf{m}/\mathsf{s}\right]$ | $\mathsf{C}\mathsf{o}\mathsf{V}[-]$ | |||

Foundation soil | PDC1 | 80 | 0.5 | |

1 × 10^{−5} | 32.5 | |||

PDC2 | ||||

3 × 10^{−5} | 5.0 | |||

Distribution | log-normal | constant | constant |

**Table 3.**Deterministic safety factors for the case study levee, exposed to various design situations.

Design Situation | Safety Factor | |||
---|---|---|---|---|

Low water | Riverside | Static | Drained | 1.4 |

Seismic (475-year RP) | Undrained | 1.1 | ||

Landside | Static | Drained | 1.4 | |

Seismic (475-year RP) | Undrained | 1.1 | ||

High water | Riverside | Static | Drained | 1.6 |

Seismic (475-year RP) | Undrained | 1.6 | ||

Landside | Static | Drained | 1.3 | |

Seismic (475-year RP) | Undrained | 1.1 | ||

Rapid drawdown | Drained | 1.2 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rossi, N.; Bačić, M.; Kovačević, M.S.; Librić, L.
Development of Fragility Curves for Piping and Slope Stability of River Levees. *Water* **2021**, *13*, 738.
https://doi.org/10.3390/w13050738

**AMA Style**

Rossi N, Bačić M, Kovačević MS, Librić L.
Development of Fragility Curves for Piping and Slope Stability of River Levees. *Water*. 2021; 13(5):738.
https://doi.org/10.3390/w13050738

**Chicago/Turabian Style**

Rossi, Nicola, Mario Bačić, Meho Saša Kovačević, and Lovorka Librić.
2021. "Development of Fragility Curves for Piping and Slope Stability of River Levees" *Water* 13, no. 5: 738.
https://doi.org/10.3390/w13050738