Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns
Abstract
:1. Introduction
1.1. Study Area
1.2. Water Scarcity
2. Data and Methods
2.1. Data
2.2. Methods
Climate indices
3. Results
3.1. Spatial and Temporal Analysis of SP
3.2. Correlation Between Climate Indices and SP
- The active and very active El Niño phases can intensify autumn precipitation significantly in the Gaza region. Its impact on winter and spring precipitation was not telling. Autumn precipitation increased by 64% in 1983, and 95% in 2005. Additionally, during the active and very active El Niño phases, the warm periods of the EAWR/AO exert more influence on the Gaza region, and the change becomes much more substantial. For instance, during warm EAWR, autumn precipitation increased by 365% in 1987. During warm AO, autumn precipitation increased by 328% in 1995. Autumn precipitation had tripled in 2016 (very active El Niño and warm EAWR and AO).
- On the other hand, the Gaza region encountered a substantial decrease in autumn precipitation during the active and very active La Niña phases. Spring precipitation might also decrease. For instance, autumn precipitation decreased by 25% in 1974, 100% in 1975, and 55% in 1985. The decrease was typically similar during the cold phases of the EAWR/AO. In 1989 (very active La Niña and cold EAWR), spring (autumn) precipitation decreased by 62% (41%). Similarly, the decline in spring (autumn) precipitation was 48% (59%) in 2000. Both AO and EAWR were in cold phases in 1999, which caused a drop of 70% (81%) in spring (autumn) precipitation.
- During the neutral phases of EAWR and SOI, AO has a negligible impact on spring and autumn precipitation in the Gaza region. The cold phases of AO decreased autumn precipitation by 97% in 1981, 91% in 1986, and 50% in 2003. Nevertheless, cold AO intensified autumn precipitation by 39% in 2001. In spring, cold AO caused a decline of 53% (61%) in 1981 (2001). However, a dominant rise was noticed in 1986 (66%) and 2003 (34%). Similarly, the warm phases of AO increased autumn precipitation by 73% in 2012; however, it decreased autumn precipitation by 89% in 2014. Its impact was also minimal in 1979.
- A quite a few changes, especially during the last two decades, still uninterpretable. For example, active La Niña increased spring (autumn) precipitation by 32% (101%) in 2006 (2009). Also, very active La Niña and cold EAWR lead to notable growth in spring precipitation (45%) in 2011. Still, previous inferences (1–3) are highly projected.
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hawajri, O. Natural disasters and complex humanitarian emergencies in the occupied Palestinian territories. Emerg. Disaster Rep. 2016, 3, 2340–9932. [Google Scholar]
- Kaniewski, D.; Van Campo, E.; Weiss, H. Drought is a recurring challenge in the Middle East. Proc. Natl. Acad. Sci. USA 2012, 109, 3862–3867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J.; Bech, J.; Rodrigo, F.S. Observed changes in daily precipitation extremes at annual timescale over the eastern mediterranean during 1961–2012. Pure Appl. Geophys. 2017, 175, 3875–3890. [Google Scholar] [CrossRef]
- Barlow, M.; Zaitchik, B.F.; Paz, S.; Black, E.; Evans, J.P.; Hoell, A. A review of drought in the Middle East and Southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Kelley, C.; Ting, M.; Seager, R.; Kushnir, Y. The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region. Clim. Dyn. 2011, 38, 2001–2015. [Google Scholar] [CrossRef] [Green Version]
- Shohami, D.; Dayan, U.; Morin, E. Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Alpert, P.; Krichak, S.; Shafir, H.; Haim, D.; Osetinsky, I. Climatic trends to extremes employing regional modeling and statistical interpretation over the E. Mediterranean. Glob. Planet. Chang. 2008, 63, 163–170. [Google Scholar] [CrossRef]
- Steinberger, E.H.; Gazit-Yaari, N. Recent changes in the spatial distribution of annual precipitation in Israel. J. Clim. 1996, 9, 3328–3336. [Google Scholar] [CrossRef] [Green Version]
- Kafle, H.K.; Bruins, H.J. Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Clim. Chang. 2009, 96, 63–77. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Pargament, R.; Harpaz, T.; Alpert, P. Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg. Environ. Chang. 2013, 14, 1751–1764. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Riffi, M.I. Analysis of the observed trends in daily extreme precipitation indices in Gaza Strip during 1974–2016. Int. J. Clim. 2020, 40, 6189–6200. [Google Scholar] [CrossRef]
- Cullen, H.M.; Kaplan, A.; Arkin, P.A.; Demenocal, P.B. Impact of the North Atlantic Oscillation on Middle Eastern climate and streamflow. Clim. Chang. 2002, 55, 315–338. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- Black, E. The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int. J. Clim. 2011, 32, 1654–1664. [Google Scholar] [CrossRef]
- Eshel, G.; Farrell, B.F. Thermodynamics of Eastern Mediterranean rainfall variability. J. Atmos. Sci. 2001, 58, 87–92. [Google Scholar] [CrossRef]
- Krichak, S.O.; Kishcha, P.; Alpert, P. Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation. Theor. Appl. Clim. 2002, 72, 209–220. [Google Scholar] [CrossRef]
- Krichak, S.O.; Tsidulko, M.; Alpert, P. Monthly synoptic patterns associated with Wet/Dry conditions in the Eastern Mediterranean. Theor. Appl. Clim. 2000, 65, 215–229. [Google Scholar] [CrossRef]
- Ben-Gai, T.; Bitan, A.; Manes, A.; Alpert, P.; Kushnir, Y. Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theor. Appl. Clim. 2001, 69, 171–177. [Google Scholar] [CrossRef]
- Ziv, B.; Dayan, U.; Kushnir, Y.; Roth, C.; Enzel, Y. Regional and global atmospheric patterns governing rainfall in the southern Levant. Int. J. Clim. 2006, 26, 55–73. [Google Scholar] [CrossRef]
- Önol, B.; Semazzi, F.H.M. Regionalization of climate change simulations over the Eastern Mediterranean. J. Clim. 2009, 22, 1944–1961. [Google Scholar] [CrossRef]
- Peleg, N.; Bartov, M.; Morin, E. CMIP5-predicted climate shifts over the East Mediterranean: Implications for the transition region between Mediterranean and semi-arid climates. Int. J. Clim. 2015, 35, 2144–2153. [Google Scholar] [CrossRef]
- Samuels, R.; Hochman, A.; Baharad, A.; Givati, A.; Levi, Y.; Yosef, Y.; Saaroni, H.; Ziv, B.; Harpaz, T.; Alpert, P. Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi-model ensemble. Int. J. Clim. 2018, 38, 2280–2297. [Google Scholar] [CrossRef]
- Krichak, S.O.; Alpert, P.; Bassat, K.; Kunin, P. The surface climatology of the eastern Mediterranean region obtained in a three-member ensemble climate change simulation experiment. Adv. Geosci. 2007, 12, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.P. 21st century climate change in the Middle East. Clim. Chang. 2008, 92, 417–432. [Google Scholar] [CrossRef]
- Terink, W.; Immerzeel, W.W.; Droogers, P. Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int. J. Clim. 2013, 33, 3055–3072. [Google Scholar] [CrossRef]
- Hochman, A.; Mercogliano, P.; Alpert, P.; Saaroni, H.; Bucchignani, E. High-resolution projection of climate change and extremity over Israel using COSMO-CLM. Int. J. Clim. 2018, 38, 5095–5106. [Google Scholar] [CrossRef]
- UNRWA-OCHA. United Nations Office for the Coordination of Humanitarian Affairs-Occupied Palestinian Territory. Available online: https://www.ochaopt.org/content/winter-weather-results-casualties-flooding-and-additional-displacement-gaza-strip (accessed on 25 May 2020).
- UNRWA-OCHA. United Nations Office for the Coordination of Humanitarian Affairs. Humanitarian Bulletin Occupied Palestinian Territory. Available online: https://www.ochaopt.org/content/monthly-humanitarian-bulletin-november (accessed on 25 May 2020).
- UNRWA-OCHA. United Nations Office for the Coordination of Humanitarian Affairs. Humanitarian Bulletin Occupied Palestinian Territory. Available online: https://www.ochaopt.org/content/poor-infrastructure-and-lack-funding-put-over-560000-people-risk-flooding-gaza-strip (accessed on 25 May 2020).
- Ajjur, S.B.; Mogheir, Y.K. Identification of intrinsic suitable sites in Gaza Strip for the application of artificial groundwater recharge using a geographic information system multicriteria decision analysis. J. Multi-Criteria Decis. Anal. 2020, 27, 255–265. [Google Scholar] [CrossRef]
- Mason, M.; Zeitoun, M.; Mimi, Z. Compounding vulnerability: Impacts of climate change on Palestinians in Gaza and the West Bank. J. Palest. Stud. 2012, 41, 38–53. [Google Scholar] [CrossRef]
- United Nation Environment Programme UNEP. Desk Study on the Environment in the Occupied Palestinian Territories; United Nation Environment Programme UNEP: Geneva, Switzerland, 2003. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Ajjur, S.B.; Mogheir, Y.K. Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine). Arab. J. Geosci. 2020, 13, 44. [Google Scholar] [CrossRef]
- Hussein, H. Lifting the veil: Unpacking the discourse of water scarcity in Jordan. Environ. Sci. Policy 2018, 89, 385–392. [Google Scholar] [CrossRef]
- Hussein, H. Politics of the dead sea canal: A historical review of the evolving discourses, interests, and plans. Water Int. 2017, 42, 527–542. [Google Scholar] [CrossRef]
- Hussein, H. Whose “reality”? Discourses and hydropolitics along the Yarmouk River. Contemp. Levant 2017, 2, 103–115. [Google Scholar] [CrossRef]
- Hussein, H.; Menga, F.; Greco, F. Monitoring transboundary water cooperation in SDG 6.5.2: How a critical hydropolitics approach can spot inequitable outcomes. Sustainability 2018, 10, 3640. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, F. RH Tests-dlyPrcp User Manual. Available online: http://etccdi.pacificclimate.org/RHtest/RHtests_dlyPrcp_UserManual_10Dec2014.pdf (accessed on 10 December 2020).
- Zhou, B.; Liang, C.; Zhao, P.; Dai, Q. Analysis of precipitation extremes in the source region of the yangtze river during 1960–2016. Water 2018, 10, 1691. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin & Company: London, UK, 1970. [Google Scholar]
- Bayazit, M.; Önöz, B. To prewhiten or not to prewhiten in trend analysis? Hydrol. Sci. J. 2007, 52, 611–624. [Google Scholar] [CrossRef]
- Canchala, T.; Cerón, W.L.; Francés, F.; Carvajal-Escobar, Y.; Andreoli, R.V.; Kayano, M.T.; Alfonso-Morales, W.; Caicedo-Bravo, E.; De Souza, R.A.F. Streamflow variability in Colombian Pacific Basins and their teleconnections with climate indices. Water 2020, 12, 526. [Google Scholar] [CrossRef] [Green Version]
- Ni, N.; Zhang, H. A study of precipitation patterns through stochastic ordering. Water 2020, 12, 351. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Liu, J.; Berndtsson, R.; Hao, Z.; Cao, Q.; Wang, H.; Du, Y.; An, D. Changes in Precipitation extremes over the source region of the yellow river and its relationship with teleconnection patterns. Water 2020, 12, 978. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, Z.; Zuo, D.; Ban, C. Hydro-meteorological trends in the Yarlung Zangbo River Basin and possible associations with large-scale circulation. Water 2020, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In Geophysical Monograph Series; American Geophysical Union (AGU): Washington, DC, USA, 2003; Volume 134, pp. 1–35. [Google Scholar]
- Allan, R.J.; Nicholls, N.; Jones, P.D.; Butterworth, I.J. A further extension of the Tahiti-Darwin SOI, Early ENSO events and darwin pressure. J. Clim. 1991, 4, 743–749. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A.L. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Higgins, R.W.; Leetmaa, A.; Kousky, V.E. Relationships between climate variability and winter temperature extremes in the United States. J. Clim. 2002, 15, 1555–1572. [Google Scholar] [CrossRef] [Green Version]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Dehghani, M.; Salehi, S.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Ghamisi, P. Spatial analysis of seasonal precipitation over Iran: Co-variation with climate indices. ISPRS Int. J. Geo-Inf. 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Saghafian, B.; Haghnegahdar, A.; Dehghani, M. Effect of ENSO on annual maximum floods and volume over threshold in the southwestern region of Iran. Hydrol. Sci. J. 2017, 62, 1039–1049. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Q.; Singh, V.P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China. Int. J. Clim. 2015, 35, 3556–3567. [Google Scholar] [CrossRef]
- Stojanovic, M.; Liberato, M.L.; Sorí, R.; Vázquez, M.; Phan-Van, T.; Duongvan, H.; Cong, T.H.; Nguyen, P.N.B.; Nieto, R.; Gimeno, L. Trends and extremes of drought episodes in Vietnam sub-regions during 1980–2017 at different timescales. Water 2020, 12, 813. [Google Scholar] [CrossRef] [Green Version]
- Krichak, S.O.; Tsidulko, M.; Alpert, P. 2 November 1994, severe storms in the southeastern Mediterranean. Atmos. Res. 2000, 53, 45–62. [Google Scholar] [CrossRef]
- Ziv, B.; Dayan, U.; Sharon, D. A mid-winter, tropical extreme flood-producing storm in southern Israel: Synoptic scale analysis. Theor. Appl. Clim. 2004, 88, 53–63. [Google Scholar] [CrossRef]
- Saeed, S.; Almazroui, M. Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim. Dyn. 2019, 53, 5253–5264. [Google Scholar] [CrossRef]
- Price, C.; Stone, L.; Huppert, A.; Rajagopalan, B.; Alpert, P. A possible link between El Niño and precipitation in Israel. Geophys. Res. Lett. 1998, 25, 3963–3966. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.F.; Luterbacher, J.; Wanner, H. Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Clim. Dyn. 2004, 23, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor. Appl. Clim. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- De Luca, D.L.; Petroselli, A.; Galasso, L. A transient stochastic rainfall generator for climate changes analysis at hydrological scales in Central Italy. Atmosphere 2020, 11, 1292. [Google Scholar] [CrossRef]
- Burton, A.; Fowler, H.; Blenkinsop, S.; Kilsby, C. Downscaling transient climate change using a Neyman–scott rectangular Pulses stochastic rainfall model. J. Hydrol. 2010, 381, 18–32. [Google Scholar] [CrossRef]
- Twardosz, R.; Kossowska-Cezak, U. Winter air temperature in Warsaw depending on the NAO index and the regional circulation. Q. J. Hung. Meteorol. Serv. 2020, 124, 97–111. [Google Scholar] [CrossRef]
- Walanus, A.; Cebulska, M.; Twardosz, R. Long-term variability pattern of monthly and annual atmospheric precipitation in the polish carpathian mountains and their Foreland (1881–2018). Pure Appl. Geophys. 2021, 178, 633–650. [Google Scholar] [CrossRef]
- Riachi, R. Beyond Rehashed Policies: Lebanon Must Tackle its Water Crisis Head-on. The Lebanese Center for Policy Studies. Available online: https://www.lcps-lebanon.org/featuredArticle.php?id=27 (accessed on 10 December 2020).
Station Name | Latitude_N | Longitude_E | Altitude_m | Climate Class | Thiessen Weight (–) |
---|---|---|---|---|---|
Beit-Hanon | 31°32′30″ | 34°32′24″ | 62 | Csa (dry temperate) | 0.097 |
Beit-Lahia | 31°33′51″ | 34°28′10″ | 7 | 0.057 | |
Remal | 31°31′09″ | 34°26′33″ | 30 | 0.156 | |
Nuseirat | 31°26′08″ | 34°23′19″ | 23 | BSha (semi-arid) | 0.128 |
Deir-Elbalah | 31°24′47″ | 34°21′11″ | 32 | 0.105 | |
Khan-Yunes | 31°20′35″ | 34°18′30″ | 43 | 0.275 | |
Rafah | 31°16′16″ | 34°15′16″ | 71 | 0.181 |
Indices Range | NAO | SOI | Niño 3.4 | AO | EAWR |
---|---|---|---|---|---|
I ≤ −2 | Cold | Very active El Niño | Warm | Cold | Cold |
−2 < I ≤ −1 | Active El Niño | ||||
−1 < I ≤ 1 | Neutral | Neutral | Neutral | Neutral | Neutral |
1 < I ≤ 2 | Warm | Active La Niña | Cold | Warm | Warm |
I ≥ 2 | very active La Niña |
Season | Mean (µ) | Max | Min | Average Trenda (Linear Slope) | MK Testa (Z) | Percentage of Stations with | |
---|---|---|---|---|---|---|---|
Positive Trend | Negative Trend | ||||||
Winter | 188.9 | 337.1 | 43.8 | 0.08 | 0.02 | 43% | 57% |
Spring | 41.1 | 115.5 | 0 | −0.19 | −0.55 | 14% | 86% |
Summer | - | - | - | - | - | - | - |
Autumn | 65.9 | 306.5 | 0 | 1.27 | 1.63 | 100% (28%) | - |
Annual | 295.8 | 563 | 103.4 | 1.17 | 1.15 | 100 | - |
Year | SOI | EAWR | AO | Variation from the Long-Term (1974–2016) Average | ||
---|---|---|---|---|---|---|
Winter | Spring | Autumn | ||||
1974 | active La Niña | Neutral | Neutral | +71% | +60% | −25% |
1975 | active La Niña | Neutral | Neutral | −23% | +6% | −100% |
1976 | Neutral | Neutral | Neutral | −16% | −69% | −49% |
1977 | active El Niño | Neutral | Neutral | +4% | +67% | −79% |
1978 | Neutral | Neutral | Neutral | +9% | −25% | −32% |
1979 | Neutral | Neutral | Warm | −31% | +10% | −1% |
1980 | active El Niño | Neutral | Neutral | −30% | - | +6% |
1981 | Neutral | Neutral | Cool | - | −53% | −97% |
1982 | Neutral | Neutral | Neutral | −19% | +45% | −28% |
1983 | active El Niño | Neutral | Neutral | +28% | +47% | +64% |
1984 | Neutral | Neutral | Neutral | −77% | +3% | −63% |
1985 | active La Niña | Neutral | Neutral | −39% | +2% | −55% |
1986 | Neutral | Neutral | Cool | −15% | +66% | −91% |
1987 | Very active El Niño | Warm | Neutral | −29% | +11% | +365% |
1988 | Neutral | Neutral | Neutral | +25% | −46% | −72% |
1989 | very active La Niña | Cool | Neutral | +50% | −62% | −41% |
1990 | Neutral | Neutral | Neutral | +1% | +117% | −9% |
1991 | active El Niño | Neutral | Neutral | +22% | +181% | −75% |
1992 | Very active El Niño | Warm | Neutral | +46% | −54% | +71% |
1993 | Very active El Niño | Warm | Neutral | +44% | −31% | −37% |
1994 | Very active El Niño | Warm | Neutral | −59% | −29% | −29% |
1995 | active El Niño | Neutral | Warm | +32% | −22% | +328% |
1996 | Neutral | Neutral | Neutral | +22% | +152% | −50% |
1997 | active El Niño | Neutral | Neutral | +13% | +41% | −30% |
1998 | Very active El Niño | Warm | Neutral | −33% | −71% | −93% |
1999 | very active La Niña | Cool | Cool | −58% | −70% | −81% |
2000 | active La Niña | Cool | Neutral | +18% | −48% | −59% |
2001 | Neutral | Neutral | Cool | +76% | −61% | +39% |
2002 | Neutral | Neutral | Neutral | +60% | +24% | −17% |
2003 | Neutral | Neutral | Cool | +50% | +34% | −50% |
2004 | active El Niño | warm | Neutral | −24% | −42% | −94% |
2005 | active El Niño | Neutral | Neutral | −25% | −2% | +95% |
2006 | active La Niña | Neutral | Neutral | −46% | +32% | −7% |
2007 | Neutral | Neutral | Neutral | +7% | +48% | +52% |
2008 | Neutral | Neutral | Neutral | +5% | - | −47% |
2009 | active La Niña | Neutral | Neutral | −35% | −35% | +101% |
2010 | active La Niña | Cool | Neutral | −30% | −84% | −6% |
2011 | very active La Niña | Cool | Neutral | −23% | +45% | −89% |
2012 | Neutral | Neutral | Warm | −5% | +47% | +73% |
2013 | Neutral | Neutral | Neutral | +6% | −77% | −31% |
2014 | Neutral | Neutral | Warm | +79% | +68% | −89% |
2015 | Neutral | Neutral | Neutral | −54% | −5% | +232% |
2016 | Very active El Niño | Warm | Warm | +6% | −29% | +196% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajjur, S.B.; Al-Ghamdi, S.G. Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns. Water 2021, 13, 667. https://doi.org/10.3390/w13050667
Ajjur SB, Al-Ghamdi SG. Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns. Water. 2021; 13(5):667. https://doi.org/10.3390/w13050667
Chicago/Turabian StyleAjjur, Salah Basem, and Sami G. Al-Ghamdi. 2021. "Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns" Water 13, no. 5: 667. https://doi.org/10.3390/w13050667
APA StyleAjjur, S. B., & Al-Ghamdi, S. G. (2021). Variation in Seasonal Precipitation over Gaza (Palestine) and Its Sensitivity to Teleconnection Patterns. Water, 13(5), 667. https://doi.org/10.3390/w13050667