International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities
Abstract
:1. Introduction
2. Perceptions of BGI
Purpose of the Research
3. Case Study Cities
4. Methods
4.1. Survey Structure and Delivery
4.1.1. Participants and Response Rate
4.2. Data and Statistical Analysis
5. Results
5.1. Water Challenges
5.2. Multiple Benefits of BGI
5.3. Drivers for BGI Implementation
5.4. BGI Leaders
5.5. Overcoming Barriers to BGI Implementation
6. Discussion
6.1. Delivery of Multiple Benefits by Multifunctional BGI
6.2. Overcoming Barriers through BGI Leadership and Governance
6.2.1. National and Local Government Leadership
“In China, national initiative from the central government would still be the most influential factor to drive any infrastructure building while local government would have the knowledge and capital on the ground to implement it.”
6.2.2. Nonprofits and Citizen Advocacy
6.2.3. Improving Uptake of BGI
6.3. Key Insights
6.4. Limitations of the Survey
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) network: Toward water-sensitive urban growth planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. Key factors influencing wider adoption of blue–green infrastructure in developing cities. Water 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Kapetas, L.; Fenner, R. Integrating Blue-Green and Grey Infrastructure through an Adaptation Pathways Approach to Surface Water Flooding. Phil. Trans. R. Soc. A 2020, 378, 20190204. [Google Scholar] [CrossRef] [Green Version]
- Kozak, D.; Henderson, H.; de Castro Mazarro, A.; Rotbart, D.; Aradas, R. Blue-green infrastructure (BGI) in dense urban watersheds. The case of the Medrano stream basin (MSB) in Buenos Aires. Sustainability 2020, 12, 2163. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.-H. The socio-ecological practice of building blue-green infrastructure in high-density cities: What does the ABC Waters Program in Singapore tell us? Socio-Ecol. Pr. Res. 2019, 1, 67–81. [Google Scholar] [CrossRef] [Green Version]
- McPhillips, L.E.; Matsler, M.; Rosenzweig, B.R.; Kim, Y. What is the role of green stormwater infrastructure in managing extreme precipitation events? Sustain. Resilient Infrastruct. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- O’Donnell, E.; Thorne, C.; Yeakley, J.; Chan, F. Sustainable Flood Risk and Stormwater Management in Blue-Green Cities; an Interdisciplinary Case Study in Portland, Oregon. J. Am. Water Resour. Assoc. 2020, 56, 757–775. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Fenner, R. Spatial evaluation of multiple benefits to encourage multi-functional design of sustainable drainage in blue-green cities. Water 2017, 9, 953. [Google Scholar] [CrossRef] [Green Version]
- Ghofrani, Z.; Sposito, V.; Faggian, R. Maximising the Value of Natural Capital in a Changing Climate Through the Integration of Blue-Green Infrastructure. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 213–234. [Google Scholar] [CrossRef]
- Hamann, F.; Blecken, G.-T.; Ashley, R.M.; Viklander, M. Valuing the Multiple Benefits of Blue-Green Infrastructure for a Swedish Case Study: Contrasting the Economic Assessment Tools B£ ST and TEEB. J. Sustain. Water Built Environ. 2020, 6, 05020003. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef]
- Browder, G.; Ozment, S.; Rehberger Bescos, I.; Gartner, T.; Lange, G.-M. Integrating Green and Gray: Creating Next Generation Infrastructure. World Bank and World Resources Institute: Washington, DC, USA © World Bank and World Resources Institute. Available online: https://openknowledge.worldbank.org/handle/10986/31430 (accessed on 25 February 2020).
- Leng, L.; Mao, X.; Jia, H.; Xu, T.; Chen, A.S.; Yin, D.; Fu, G. Performance assessment of coupled green-grey-blue systems for Sponge City construction. Sci. Total Environ. 2020, 728, 138608. [Google Scholar] [CrossRef] [PubMed]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, R.; van der Brugge, R. Transforming water infrastructure by linking water management and urban renewal in Rotterdam. Technol. Forecast. Soc. Chang. 2010, 77, 1282–1291. [Google Scholar] [CrossRef]
- Defra. Making Space for Water: Taking Forward a New Government Strategy for Flood and Coastal Erosion Risk Management in England; Delivery Plan; Department for Environment, Food and Rural Affair: London, UK, 2005. [Google Scholar]
- Sharma, A.; Pezzaniti, D.; Myers, B.; Cook, S.; Tjandraatmadja, G.; Chacko, P.; Chavoshi, S.; Kemp, D.; Leonard, R.; Koth, B. Water sensitive urban design: An investigation of current systems, implementation drivers, community perceptions and potential to supplement urban water services. Water 2016, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jensen, M.B. Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities 2018, 74, 126–133. [Google Scholar] [CrossRef]
- Shandas, V.; Matsler, A.; Caughman, L.; Harris, A. Towards the implementation of green stormwater infrastructure: Perspectives from municipal managers in the Pacific Northwest. J. Environ. Plan. Manag. 2020, 63, 959–980. [Google Scholar] [CrossRef]
- Gunawardena, K.; Wells, M.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, Z.; Sposito, V.; Faggian, R. A Comprehensive Review of Blue-Green Infrastructure Concepts. Int. J. Environ. Sustain. 2017, 6, 15–36. [Google Scholar] [CrossRef]
- O’Donnell, E.; Thorne, C. Urban Flood Risk Management: The Blue-Green Advantage. In Blue-Green Cities: Integrating Urban Flood Risk Management with Green Infrastructure; Thorne, C., Ed.; ICE Publishing: London, UK, 2020. [Google Scholar]
- Deely, J.; Hynes, S.; Barquín, J.; Burgess, D.; Finney, G.; Silió, A.; Álvarez-Martínez, J.M.; Bailly, D.; Ballé-Béganton, J. Barrier identification framework for the implementation of blue and green infrastructures. Land Use Policy 2020, 99, 105108. [Google Scholar] [CrossRef]
- Abbott, J.; Davies, P.; Simkins, P.; Morgan, C.; Levin, D.; Robinson, P. Creating Water Sensitive Places–Scoping the Potential for Water Sensitive Urban Design in the UK; CIRIA: London, UK, 2013. [Google Scholar]
- Iakovoglou, V.; Zaimes, G.N.; Gounaridis, D. Riparian areas in urban settings: Two case studies from Greece. Int. J. Innov. Sustain. Dev. 2013, 7, 271–288. [Google Scholar] [CrossRef]
- Mant, J.; Thorne, C.; Burch, J.; Naura, M. Restoration of urban streams to create blue–green infrastructure. In Blue–Green Cities: Integrating Urban Flood Risk Management with Green Infrastructure; ICE Publishing: London, UK, 2020; pp. 77–97. [Google Scholar]
- Bischetti, G.B.; Di Fi Dio, M.; Florineth, F. On the Origin of Soil Bioengineering. Landsc. Res. 2014, 39, 583–595. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tardio, G.; Iakovoglou, V.; Gimenez, M.; Garcia-Rodriguez, J.L.; Sangalli, P. New tools and approaches to promote soil and water bioengineering in the Mediterranean. Sci. Total Environ. 2019, 693, 133677. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [Green Version]
- Netusil, N.R.; Levin, Z.; Shandas, V.; Hart, T. Valuing green infrastructure in Portland, Oregon. Landsc. Urban Plan. 2014, 124, 14–21. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Farrelly, M. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Thorne, C.R.; Lawson, E.C.; Ozawa, C.; Hamlin, S.; Smith, L.A. Overcoming uncertainty and barriers to adoption of blue-green infrastructure for urban flood risk management. J. Flood Risk Manag. 2018, 11, S960–S972. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Staddon, C.; de Vito, L.; Gerlak, A.K.; Ward, S.; Schoeman, Y.; Hart, A.; Booth, G. Challenges of mainstreaming green infrastructure in built environment professions. J. Environ. Plan. Manag. 2020, 63, 710–732. [Google Scholar] [CrossRef]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.; Lamond, J.; Thorne, C. Recognising barriers to implementation of Blue-Green infrastructure: A Newcastle case study. Urban Water J. 2017, 14, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Everett, G.; Morzillo, A.; Lamond, J.; Matsler, M.; Chan, F. Delivering Green Streets: An exploration of changing perceptions and behaviours over time around bioswales in Portland, Oregon. J. Flood Risk Manag. 2018, 11, S973–S985. [Google Scholar] [CrossRef] [Green Version]
- Hayden, L.; Cadenasso, M.L.; Haver, D.; Oki, L.R. Residential landscape aesthetics and water conservation best management practices: Homeowner perceptions and preferences. Landsc. Urban Plan. 2015, 144, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, M.; Song, B. Public perceptions of and willingness to pay for sponge city initiatives in China. Resour. Conserv. Recycl. 2017, 122, 11–20. [Google Scholar] [CrossRef]
- Williams, J.B.; Jose, R.; Moobela, C.; Hutchinson, D.J.; Wise, R.; Gaterell, M. Residents’ perceptions of sustainable drainage systems as highly functional blue green infrastructure. Landsc. Urban Plan. 2019, 190, 103610. [Google Scholar] [CrossRef]
- Miller, S.M.; Montalto, F.A. Stakeholder perceptions of the ecosystem services provided by Green Infrastructure in New York City. Ecosyst. Serv. 2019, 37, 100928. [Google Scholar] [CrossRef]
- Wihlborg, M.; Sörensen, J.; Alkan Olsson, J. Assessment of barriers and drivers for implementation of blue-green solutions in Swedish municipalities. J. Environ. Manag. 2019, 233, 706–718. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.-J.; Liu, L.; Kristoffersson, A.; Randrup, T.B. Governance factors of sustainable stormwater management: A study of case cities in China and Sweden. J. Environ. Manag. 2019, 248, 109249. [Google Scholar] [CrossRef]
- Özerol, G.; Dolman, N.; Bormann, H.; Bressers, H.; Lulofs, K.; Böge, M. Urban water management and climate change adaptation: A self-assessment study by seven midsize cities in the North Sea Region. Sustain. Cities Soc. 2020, 55, 102066. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.-H.; Kaloush, K.E.; Shacat, J. Perceptions of urban heat island mitigation and implementation strategies: Survey and gap analysis. Sustain. Cities Soc. 2021, 66, 102687. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Carsjens, G.-J.; Brown, R.D.; Tavares, S.; Vanos, J.; Kim, Y.; Lee, K. Awareness of urban climate adaptation strategies–an international overview. Urban Clim. 2020, 34, 100705. [Google Scholar] [CrossRef]
- O’Donnell, E.; Woodhouse, R.; Thorne, C. Evaluating the multiple benefits of a Newcastle SuDS scheme. Proc. Inst. Civ. Eng. Water Manag. 2018, 171, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Amec Foster Wheeler. Newcastle City Strategic Surface Water Management Plan; Final Report; Report No 36634/F/001; Amec Foaster Wheeler Environment and Infrastructure UK Limited: Newcastle, UK, 2016. [Google Scholar]
- MHURD. Technical Guide for constructing Sponge Cities (in Chinese). Ministry of Housing and Urban-Rural Development (MHURD), 2014. Available online: http://www.mohurd.gov.cn/wjfb/201411/W020141102041225.pdf (accessed on 19 May 2020).
- BES. Grey to Green Accomplishments. City of Portland, Bureau of Environmental Services. Available online: https://www.portlandoregon.gov/bes/article/321331 (accessed on 7 February 2020).
- City of Rotterdam. Rotterdam Climate Change Adaptation Strategy. 2013. Available online: http://www.urbanisten.nl/wp/wp-content/uploads/UB_RAS_EN_lr.pdf (accessed on 30 April 2020).
- Ministry of Infrastructure and the Environment. Dutch National Water Plan 2016–2021; Ministry of Infrastructure and the Environment: Amsterdam, The Netherlands, 2015.
- Buro_Sant_en_Co. Four Harbour Roof Park. 2014. Available online: http://landezine.com/index.php/2014/12/four-harbour-roof-park-by-buro-sant-en-co/ (accessed on 10 March 2020).
- McPhillips, L.E.; Matsler, A.M. Temporal evolution of green stormwater infrastructure strategies in three US cities. Front. Built Environ. 2018, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zevenbergen, C.; Fu, D. Understanding the challenges for the governance of China’s “sponge cities” initiative to sustainably manage urban stormwater and flooding. Nat. Hazards 2017, 89, 521–529. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.; Shao, W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Hölscher, K.; Frantzeskaki, N.; McPhearson, T.; Loorbach, D. Tales of transforming cities: Transformative climate governance capacities in New York City, US and Rotterdam, The Netherlands. J. Environ. Manag. 2019, 231, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Tillie, N.; van der Heijden, R. Advancing urban ecosystem governance in Rotterdam: From experimenting and evidence gathering to new ways for integrated planning. Environ. Sci. Policy 2016, 62, 139–144. [Google Scholar] [CrossRef]
- Newcastle City Council and Gateshead Council. Planning for the Future—Core Strategy and Urban Core Plan for Gateshead and Newcastle Upon Tyne 2010–2030. 2015. Available online: https://www.newcastle.gov.uk/sites/default/files/2019-01/planning_for_the_future_core_strategy_and_urban_core_plan_2010-2030.pdf (accessed on 11 May 2020).
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Sheikh, V. Perception of domestic rainwater harvesting by Iranian citizens. Sustain. Cities Soc. 2020, 60, 102278. [Google Scholar] [CrossRef]
- Vidiasova, L.; Cronemberger, F. Discrepancies in perceptions of smart city initiatives in Saint Petersburg, Russia. Sustain. Cities Soc. 2020, 59, 102158. [Google Scholar] [CrossRef]
- Kremer, P.; Hamstead, Z.A.; McPhearson, T. The value of urban ecosystem services in New York City: A spatially explicit multicriteria analysis of landscape scale valuation scenarios. Environ. Sci. Policy 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.-T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Lashford, C.; Rubinato, M.; Cai, Y.; Hou, J.; Abolfathi, S.; Coupe, S.; Charlesworth, S.; Tait, S. SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China. Sustainability 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Lamond, J.; Everett, G. Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landsc. Urban Plan. 2019, 191, 103639. [Google Scholar] [CrossRef]
- Santasusagna Riu, A.; Galindo Caldés, R.; Tort Donada, J. Assessing Inter-Administrative Cooperation in Urban Public Services: A Case Study of River Municipalities in the Internal Border Area between Aragon and Catalonia (Spain). Water 2020, 12, 2505. [Google Scholar] [CrossRef]
- Rotterdam Office of Climate Adaptation. Rotterdam Weather-Wise—Urgency document. 2020. Available online: https://www.rotterdam.nl/wonen-leven/rotterdams-weerwoord/Urgentiedocument-2020_EN.pdf (accessed on 10 March 2020).
- BES. Portland’s Green Infrastructure: Quantifying the Health, Energy, and Community Livability Benefits. City of Portland Bureau of Environmental Services (BES) and ENTRIX; 2010. Available online: https://www.portlandoregon.gov/bes/article/298042 (accessed on 8 February 2018).
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. CIRIA report C753 The SuDS Manual; CIRIA: London, UK, 2015. [Google Scholar]
- City of Portland and Multnomah County. Climate Action Plan. 2016. Available online: https://www.portlandoregon.gov/bps/article/531984 (accessed on 5 February 2019).
- City of Rotterdam. Rotterdam Resilience Strategy. 2016. Available online: http://100resilientcities.org/wp-content/uploads/2017/06/strategy-resilient-rotterdam.pdf (accessed on 25 February 2020).
- Ministry of Infrastructure and Water Management. Delta Programme 2020. Continuing the Work on the Delta: Down to Earth, Alert, and Prepared; Ministry of Infrastructure and the Environment: Amsterdam, The Netherland, 2020.
- City of Rotterdam. Rotterdam Urban Drainage Plan. 2016. Available online: https://www.rotterdam.nl/wonen-leven/grp/ (accessed on 10 December 2020).
- UFR. Newcastle Blue and Green Declaration. Urban Flood Resilience (UFR) Project Website. Available online: http://www.urbanfloodresilience.ac.uk/newcastle-blue-and-green-declaration/newcastle-blue-green-declaration.aspx (accessed on 7 February 2020).
- Inglis, J. Waterways Restored: Case Study 5—The Willamette River in Oregon. 2014. Available online: https://frontiergroup.org/blogs/blog/fg/waterways-restored-case-study-5-willamette-river-oregon (accessed on 2 June 2020).
- NWEA. Northwest Environmental Advocates (NWEA) Willamette River (Blog). Available online: https://northwestenvironmentaladvocates.org/project/willamette-river/ (accessed on 1 June 2020).
- De Urbanisten. Water Square Benthemplein. 2013. Available online: http://www.urbanisten.nl/wp/?portfolio=waterplein-benthemplein (accessed on 25 March 2020).
- US EPA Office of Water. Integrating Green Infrastructure into Federal Regulatory Programs. 2015. Available online: https://www.epa.gov/green-infrastructure/integrating-green-infrastructure-federal-regulatory-programs (accessed on 2 June 2020).
- Caparros-Midwood, D.; Dawson, R.; Barr, S. Low Carbon, Low Risk, Low Density: Resolving choices about sustainable development in cities. Cities 2019, 89, 252–267. [Google Scholar] [CrossRef]
- Ashley, R.; Blanskby, J.; Newman, R.; Gersonius, B.; Poole, A.; Lindley, G.; Smith, S.; Ogden, S.; Nowell, R. Learning and Action Alliances to build capacity for flood resilience. J. Flood Risk Manag. 2012, 5, 14–22. [Google Scholar] [CrossRef]
- O’Donnell, E.C.; Lamond, J.E.; Thorne, C. Learning and Action Alliance framework to facilitate stakeholder collaboration and social learning in urban flood risk management. Environ. Sci. Policy 2018, 80, 1–8. [Google Scholar] [CrossRef]
- Trogrlić, R.Š.; Rijke, J.; Dolman, N.; Zevenbergen, C. Rebuild by Design in Hoboken: A Design Competition as a Means for Achieving Flood Resilience of Urban Areas through the Implementation of Green Infrastructure. Water 2018, 10, 553. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S. The politics of multifunctional green infrastructure planning in New York City. Cities 2020, 100, 102621. [Google Scholar] [CrossRef]
City | Country | Main River | Area (km2) | Population | Drivers for BGI | BGI Assets/Approaches |
---|---|---|---|---|---|---|
Newcastle | UK | Tyne | 114 | 280,000 | Improving resilience to future flooding while maximising the social and environmental benefits of managing water above the ground in attractive blue-green systems | Several exemplar schemes showcase effective delivery of BGI through local and regional partnerships, e.g., SuDS ponds in Newcastle Great Park development, and the Killingworth and Longbenton surface water management scheme [51]. Proposed network of ‘Blue-Green corridors’ through city (Newcastle City Strategic Surface Water Management Plan) [52]. |
Ningbo | China | Yong, Fenghua and Yao | 9816 | 7,500,000 | Mitigating flood risk, facilitating absorption of rainwater and subsequent storage, purification and reuse, updating current drainage system | Sponge City Program (SCP) initiated by the Chinese Government in 2013 to tackle urban water challenges, rapid urbanisation, and reduction in permeable greenspace [53]. Pilot projects in 30 cities selected for the SCP trial. 20% of their urban land should include ‘sponge’ features (e.g., rain gardens, swales, wetlands) by 2020, and 70–85% annual precipitation should be managed onsite [47]. |
Portland | USA | Willamette and Columbia | 375.5 | 653,000 | Reducing nuisance flooding, improving water quality (e.g., by CSO reduction), and enhancing fish habitat | ‘Grey to Green’ initiative and others have invested widely in BGI to alleviate loadings on the piped infrastructure system and reduce adverse impacts on urban watercourses. To date, have delivered over 900 green streets (bioswales), more than 400 ecoroofs, over 32,000 street trees, and invested in widespread culvert replacement or removal; and reconnected and restored urban streams, floodplains and native vegetation [54]. |
Rotterdam | The Netherlands | Maas | 325.8 | 623,000 | Increasing the city’s resilience to the impacts of future climate change [55]. | Multi-layer-safety approach: (1) maintaining and strengthening existing infrastructure (dykes, barriers, sewers), (2) redesigning the city to create more space for water storage by promoting BGI, and (3) working with other city projects to link adaptation and spatial planning [56]. To date, there are several water squares, depaving projects, 220,000 m2 of green roofs, and a rooftop park functioning as flood defence [57]. |
City | Engineering | Environmental Management | Implementation | Landscape Architecture or Design | Planning | Strategy, Policy and Finance | Total |
---|---|---|---|---|---|---|---|
Ningbo, (China) | Private (3) Public (6) | Academia (3) | Academia (1) Private (1) | Academia (2) Public (1) | 17 | ||
Newcastle (UK) | Academia (2) Private (5) Public (2) | Nonprofits (1) Private (1) Public (2) | Public (1) | Academia (1) Private (1) | 16 | ||
Rotterdam (The Netherlands) | Private (1) Public (3) | Academia (1) | Private (3) Public (1) | Private (4) | Public (1) | Private (1)Public (1) | 16 |
Portland (USA) | Nonprofits (1) Public (2) | Nonprofits (3) Public (2) | Academia (1) Nonprofits (1) Private (2) Public (1) | Nonprofits (2) | 15 | ||
Percentage of total | 39% | 20% | 6% | 17% | 8% | 9% | 64 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donnell, E.C.; Netusil, N.R.; Chan, F.K.S.; Dolman, N.J.; Gosling, S.N. International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities. Water 2021, 13, 544. https://doi.org/10.3390/w13040544
O’Donnell EC, Netusil NR, Chan FKS, Dolman NJ, Gosling SN. International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities. Water. 2021; 13(4):544. https://doi.org/10.3390/w13040544
Chicago/Turabian StyleO’Donnell, Emily C., Noelwah R. Netusil, Faith K. S. Chan, Nanco J. Dolman, and Simon N. Gosling. 2021. "International Perceptions of Urban Blue-Green Infrastructure: A Comparison across Four Cities" Water 13, no. 4: 544. https://doi.org/10.3390/w13040544